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Preface

This is a scientific book spanning from astronomy via geodesy to mapp-
ing (and partly navigation). Its character is somewhat similar to that of
the author’s earlier book “The changing level of the Baltic Sea during 300
years: A clue to understanding the Earth”. Yet the present book has its
own flavour.

First, the theme of the book may be described as: How to use the sky to
find positions on the Earth in order to construct a map. What we study
here is the fundamental positioning for the mapping of the Nordic coun-
tries during five centuries. This is of a wider international interest than
might be assumed, as will be shown.

Second, the book has a combined scientific and historical perspective
throughout. On one hand, science is used to contribute to understanding
the historical development of positioning and mapping. On the other
hand, the historical development is used to contribute to understanding
the principles behind modern scientific positioning. Original scientific
sources (and maps) are used throughout. This means throwing light also
on important works no longer known to modern scientists.

Third, in order to broaden the outlook in somewhat unexpected direc-
tions, some special aspects related to the positioning and mapping prob-
lems are included at the end of the book.

The book is intended for reading by a wide range of geoscientists or
other people with a professional interest in the mapping of the Earth.
The reader is assumed to have an elementary knowledge of basic Earth
science, but not to know anything about positioning. The reading of the
book will be facilitated by understanding nature’s own language, mathe-
matics, at the level of a novice at a university. In some cases more ad-
vanced mathematical concepts occur in the text; these can simply be
passed over by those who are not familiar with them. The book might
also be of interest for historians of science, but they should be aware that
this is a book about science rather than about history of science.

There are a number of quotations in the text, serving to illustrate and
bring to life important points in the scientific development. Their trans-
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lations into English are due to the present author. Some of the older quo-
tations have had to be translated rather freely to make them readable;
however, great care has always been taken to convey the original mes-
sage in a correct way.

References in the text are given by names and years within brackets;
when years occur without brackets they relate to historical information.
In order to make the scientists and other persons referred to less anony-
mous, they have all been given a brief characterization, such as German
astronomer and geodesist, Danish-Swedish cartographer etc. The refe-
rence list at the end is not ordered alphabetically, as would be normal,
but chronologically. This has made it possible to give a chronological
overview of all the published works used.

The typographical layout of the book, including the design of its cover,
is due to the author. This was the case also with the earlier book; the
principles of its layout have been kept in the present one.

Most of the author’s work on this book has been performed within his
private one-man-institute, the Summer Institute for Historical Geo-
physics, on the Åland Islands in the Baltic Sea. Some early inspiration
stems from the time when the author was working at the Geodetic Re-
search Division of the National Land Survey of Sweden.

A number of people have been helpful during the work with this book
and the research leading up to it. I would like to thank the persons who
have read the manuscript and given constructive comments on it: Jonas
Ågren at the National Land Survey of Sweden, Niels Andersen at the
Danish Space Centre, Bjørn Geirr Harsson at the Norwegian Mapping
Authority, and Jaakko Mäkinen at the Finnish Geodetic Institute. To find
the old literature I have had great benefit of the library of the Royal Swed-
ish Academy of Sciences, partly deposited with the University Library of
Stockholm, and the library of the former Geographical Survey Office of
Sweden, to some extent also the library of the Astronomical Observatory
at the University of Uppsala and the library of the former Danish Geo-
detic Institute. To find some original positioning information not pub-
lished I had great use of the Geodetic Archives of the National Land
Survey of Sweden as well as the Archives of the National Maritime Ad-
ministration of Sweden.
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My final thanks go to those star observers, long since dead, whose faith-
ful work in former centuries during cold and dark nights created a founda-
tion for the mapping of the Earth’s surface and, thereby, for this book.

Åland Islands, a starlit evening in autumn 2010

Martin Ekman



1. Introduction: Combining the sky and the Earth

1.1 How does one make a map?

This is a book about 500 years of Nordic answers to a very specific
question: Where on Earth are we? The easiest way to answer such a ques-
tion is to look on a map of the Earth, find your location on the map, and
say, pointing at it: Here we are! But how can this question be answered
when we do not have a map – if we, instead, are the ones who have been
charged with making the map? Then we will have to find our position on
the Earth in some other way, by turning our eyes towards the sky, as in
Figure 1-1. We will have to observe sun, stars, moons, satellites etc. This
is what this book is about. The book deals with how the sky has been
used to map the Earth in the north, from the 1500s up till today. Further-
more, the book investigates how the uncertainty of the positions has de-
creased during these five centuries, from, as it will turn out, one hundred
kilometres to a centimetre.

The construction of a map or a chart from the very beginning is a
task that has to be solved in several steps as follows:

1. Find the size and shape of the Earth. In the early days the Earth was treat-
ed as a sphere, characterized by its radius. Later on it was realized that
the Earth is flattened at the poles due to its rotation around its axis and
thus has to be treated as an ellipsoid, characterized by its equatorial ra-
dius and its flattening.

2. Determine the positions of a number of points on the Earth’s surface as accu-
rately as possible. The position is given by two coordinates, latitude and
longitude. Other points are then determined locally in relation to these
fundamental points. This item, positioning, forms the main part of mak-
ing a map; it is a time-consuming work. Calculations are made on the
spherical or ellipsoidal Earth defined by item 1.

3. Perform a projection of the curved surface of the Earth onto a plane, a map
projection. This means mathematically converting all latitudes and longi-
tudes, obtained according to item 2, to planar coordinates, in such a way
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that inevitable distortions of the Earth’s surface caused by the projection
are in some sense minimized.

4. Now themap is ready to be drawn, and then printed on a sheet of paper.
The final product is, hopefully, a combination of science and art.

1.2 Northern positioning with international connections

There are certain things that make positioning and mapping of the
Nordic area through history of a wider international interest than might
be assumed. These things are mainly related to scientific activities at spe-
cial observatories and to scientific expeditions requiring high latitudes.

The observatory of Uranienborg, close to København, was founded
in 1576 by the Danish astronomer Tycho Brahe, known for his careful
observations leading to Kepler’s laws of planetary motion, and from
there on to Newton’s law of gravitation. Uranienborg at that time deve-
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Figure 1-1. A starlit sky during a Nordic winter night. (Painting by H Wi-
berg 1960 as an illustration to V Rydbergs poem “Tomten” from 1881.)



loped into a kind of international centre for positioning of stars on the ce-
lestial sphere as well as for positioning of places on the Earth, especially
for determinations of latitude.

The observatory ofUppsala, not far from Stockholm, was founded in
1739 by the Swedish geophysicist Anders Celsius, mostly known for his
temperature scale. A few decades later much of the activities there were
moved to the new observatory of Stockholm. Through Celsius’ assistant,
Pehr Wargentin, Uppsala and later Stockholm for a period became an
international centre for determinations of longitude using the moons of
Jupiter.

The fact that the Nordic countries form a fairly inhabited area more
to the north than anywhere else in the world has made this area an inte-
resting one from a geoscientific point of view. Already in the middle of
the 1700s there was a French initiative for determining the distances to
the moon and the sun by making observations from locations on the
same longitude but maximally separated in latitude. The optimal areas
were found to be South Africa and northern Sweden; this contributed to
promoting astronomical positioning in Sweden at that time.

In the beginning of the 1700s French scientists tried to solve an in-
ternational controversy on the flattening of the Earth and, ultimately, on
Newton’s theories of gravitation and rotation. They therefore sent a scien-
tific expedition, including Celsius, as far north as possible, which was
judged to be northern Sweden with Finland. This had a considerable im-
pact on the introduction of triangulation for mapping purposes in the
Nordic countries, especially for charting the Baltic Sea. A century later,
in the middle of the 1800s, there was a Russian expedition, with Scandi-
navian participants, for investigating the flattening of the Earth; this had
impacts on the mapping of Finland and northern Norway. And at about
the same time Gauss in Germany, applying his new mathematics to
mapping problems, cooperated with the mapping scientists in Denmark.

In our own time the introduction of satellite positioning has been
promoted by the existence of a radio-astronomical observatory at On-
sala close to Göteborg and a Nordic-American cooperation connected to
that.
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It should be clarified here that the book deals with the main parts of
the Nordic countries Denmark, Norway, Sweden and Finland, including
the Baltic Sea. It does not include the Nordic islands in the North Atlantic,
except when these have been used for the introduction of new methods in
the Nordic area.

1.3 Coordinates on the Earth and in the sky

Before entering into the main contents of the book we need to define
the coordinates we are going to use, both on the Earth and on the celes-
tial sphere.

A position on the Earth is specified by its latitude and longitude. On
a spherical Earth these well-known coordinates are simple to define; see
Figure 1-2. The latitude is the arc along a meridian from the equator to the
point in question, or the corresponding angle between the equatorial
plane and the normal to the sphere through the point. The longitude is the
arc along the equator between an arbitrary zero meridian and the meri-
dian through the point in question, or the corresponding angle between
the two meridian planes.
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Zero meridian

Figure 1-2. Latitude and longitude on a spherical Earth.



On an ellipsoidal Earth flattened at the poles things become a little
more complicated; see Figure 1-3. The latitude can no longer be defined
as an arc since the meridian now is elliptic. The latitude has to be defined
as the angle between the equatorial plane and the normal to the ellipsoid
through the point in question. The longitude can still be defined as above.
(Later in the book it will turn out that disturbing influences of the irre-
gular mass distribution within the Earth will make things even more
complicated, but we leave that aside here).

Turning to the sky we can more or less copy the spherical coordinate
system from the Earth to the celestial sphere, with the Earth in its centre.
Thus we have on the celestial sphere a celestial equator. The coordinate
here corresponding to the latitude is known as the declination. The coor-
dinate corresponding to the longitude is known as the right ascension; it
is counted from a ”zero meridian” through the so-called vernal equi-
noctial point (this is where the sun is at the vernal equinox).

None of the coordinates above can be observed directly. What can
be observed are only the coordinates of sun, stars etc. with respect to the
horizon. These coordinates are the altitude, reckoned from the horizon
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Figure 1-3. Latitude and longitude on an ellipsoidal Earth flattened
at the poles.



upwards, and the azimuth, reckoned from the meridian in the south to-
wards west.

Once the declination and right ascension of a celestial object are
known, observations of its altitude and azimuth can yield the latitude
and longitude of the observation point on the Earth. If, on the other hand,
the latitude and longitude of the observation point are known, observa-
tions of altitude and azimuth can yield the declination and right ascen-
sion of the object. But if the latitude and longitude are not known, the
declination and right ascension cannot be found, and if the declination
and right ascension are not known, the latitude and longitude cannot be
found. So where does it all start? How can we find a position on the Earth
without knowing anything beforehand?

A modern person would answer: Use satellites! But satellite posi-
tioning is based on measuring distances from the satellites to the obser-
vation point. To find the coordinates of the observation point from the
distances we need to know the coordinates of the satellites. To find the
coordinates of the satellites we have to observe them from some obser-
vatories on the Earth, and then we need to know the coordinates of these
observatories. But how then do we find the coordinates of the observa-
tories? This only leads us back to the original question: Where does it all
start? How can we find a position on the Earth without knowing anything
beforehand? That will be revealed in the following chapters.
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2. Sun and latitude: General maps of the first
generation

2.1 The sun at the Arctic circle

The simplest way of finding one’s latitude on the Earth is by observ-
ing the sun, more specifically its altitude (height angle) above the hori-
zon. This principle had been known already to the Greeks during the
antiquity. Eratosthenes had used it, together with distance measure-
ments along a meridian, to find the radius of the Earth about 240 B.C.

Observing the altitude of the sun was probably the major tool for
navigation used by the Norwegian and Icelandic Vikings, who were the
first to cross the North Atlantic Ocean one thousand years ago. The use
of the sun for finding the latitude here was facilitated by the sun being
above the horizon for most of the twenty-four hours during summer.

The oldest preserved document related to the need for determining
the latitude when sailing on the Atlantic is a manuscript by the Icelandic
navigator Oddi Helgason (c. 1150). Helgason, known as Stjörnu-Oddi
[Star-Oddi], made a compilation of the daily maximum altitude of the
sun above the horizon during the course of a year. This was based on
his observations of the sun performed on a small and flat island, Flatey,
situated in a bay on the northern coast of Iceland, very close to the Arctic
circle. Let us study the main results of Stjörnu-Oddi in order to under-
stand how they might be used for latitude determinations.

Stjörnu-Oddi measured the sun’s altitude above the horizon at
noon, when the sun is in the meridian, i.e. due south. This is when the
sun has its maximum altitude during the day and, consequently, its shad-
ow is at its shortest. The angular unit used by him for giving the sun’s al-
titude is a ”wheel”, one wheel being equal to the angular diameter of the
sun. Hence 1 wheel = 32’ = 0.53°.

During a year the sun is at its lowest at the winter solstice (normally
22 December). On that occasion the sun could not be seen from Flatey be-
cause of the mountains on the mainland in the south. However, Stjörnu-
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Oddi must have been able to estimate that the meridian altitude of the
sun was close to zero that day, because the same altitude could be ob-
served for the midsummer midnight sun at the free horizon in the north.
Starting from the winter solstice Stjörnu-Oddi then gives an account of
how the meridian altitude of the sun increases with the time of the year,
until it reaches its highest value at the summer solstice half a year later
(normally 22 June). He finds that the total increase in meridian altitude
amounts to 91 wheels. After this the altitude decreases in the same way
during half a year until the next winter solstice. Denoting the meridian
altitude of the sun at winter solstice by hw, at summer solstice by hs, and
at the equinoxes in between by he, we have according to Stjörnu-Oddi
hw = 0 wheels = 0°, he = 45 ½ wheels = 24°, hs = 91 wheels = 48°. The cor-
rect values would be, respectively, 0°, 23 ½ °, 47° (the effect of refraction
close to the horizon at the winter solstice being ignored).

At the vernal equinox (normally 21 March) or the autumnal equi-
nox (normally 23 September), when day and night are of equal length,
the sun is in the equator. This means that the equator can be easily locat-
ed on the celestial sphere on that occasion; it is simply where the sun is.
As a consequence, the latitude of the observation point on the Earth
can be determined directly from the meridian altitude of the sun above
the horizon that day:

(2-1)

Inserting he = 24° from Stjörnu-Oddi’s data above we find = 66°. The
correct value for the Arctic circle is 66 ½ °, making the error in latitude
only ½ °.

Once the latitude is fixed, the sun’s deviation from the equator,
i.e. the declination of the sun, can be determined throughout the
year: = h - he or

(2-2)

Here h denotes the meridian altitude of the sun each day of observation.
From Stjörnu-Oddi’s data we find, with the correct values within brack-
ets, w = - 24° (- 23 ½ °), = 0° (0°), s = + 24° (+ 23 ½ °).
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With such a table of the declination of the sun, in a more detailed
version, the latitude of any point on the Earth can be determined any
day of the year by measuring the meridian altitude of the sun as seen
from the point in question:

(2-3)

In this way Stjörnu-Oddi’s data could be used for latitude determina-
tions, e.g. during navigation on the ocean; see also Figure 2-1.

Looking back we may describe the whole procedure of latitude de-
termination, using observations of the sun, in the following three steps:

1. Determine the latitude of an ”observatory” from the meridian altitude
of the sun there at the vernal or autumnal equinox, according to (2-1).

2. Determine the declinations of the sun throughout the year from the
latitude found in item 1 and the meridian altitudes of the sun at the ”ob-
servatory” throughout the year, according to (2-2).

3. Determine the latitude of an arbitrary station from the declinations of
the sun found in item 2 and the meridian altitude of the sun at the sta-
tion in question any day of the year, according to (2-3).

18

Figure 2-1. The relation between latitude , declination and altitude
(h) along the meridian on the celestial sphere.
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2.2 The first maps based on sun observations

In the 1500s ships started crossing the oceans on a more global scale.
By collecting sun-based latitude determinations and other data from
ships navigating the seas and visiting harbours along the coasts, it be-
came possible to make reasonably realistic maps of the world. These
maps included a graticule, i.e. parallels and meridians, to allow reading
of latitudes and longitudes for various objects on the map. The first use-
ful world map of this kind was constructed by the Dutch mathematician
and cartographer Gerard Mercator (1569). Mercator had produced a
smaller such map already in 1538, but this was a large one. Moreover,
with this map Mercator introduced a new map projection; later on this
projection was to be used for marine charts all over the world.

Mercator’s map was issued only in a few copies. However, a colla-
boration with another Dutch cartographer, Abraham Ortelius, resulted
in a large number of more detailed maps. They were all produced in
equal size and put together into a book. This was the first atlas; it was
issued by Ortelius the year after Mercator’s map, Mercator acting in the
background as a kind of scientific advisor. The maps of the atlas were
drawn and engraved on copper plates, and then printed and coloured.
The colouring of the maps led to one of the world’s first salaried employ-
ments for women, among them Ortelius’ sisters.

In the atlas one finds what is probably the oldest astronomically based
map of the Nordic countries and the Baltic Sea. This map of Ortelius (1570)
is the oldest Nordic map with a realistic graticule of parallels and meri-
dians appearing on it; see Figure 2-2. It should be mentioned here that
Mercator had produced a similar map earlier, in 1554, but no copy of
that map has survived until today. Both Ortelius and Mercator included
in their maps information from more primitive maps issued earlier, espe-
cially that of the exiled Swedish cleric Olaus Magnus, but the scientific
basis of their maps is completely new.

Let us now use the graticule on Ortelius’ map to investigate the lati-
tude determinations behind it, most of them apparently compiled by
Mercator from about 1538 onwards. Stations selected for the investiga-
tion are harbour towns and alike at that time; for such places latitudes
might have been reported from ships navigating the Nordic and Baltic



area. The 26 selected stations are listed in Table 2-1, together with their
latitudes read from the map, their latitudes according to modern know-
ledge (correct latitudes), and the error in latitude for each station. The
error is calculated as map latitude minus modern latitude. The map lati-
tudes have been read with an accuracy of 5’; accordingly they as well as
the latitude errors are given in 5’ intervals.

A group of stations at the top of the table, marked by asterisks, have
very large errors, about 3°. This indicates that their latitudes cannot have
been determined astronomically. They are situated in the innermost
parts of the Gulf of Finland and the Gulf of Bothnia, respectively, all of
them being at that time remote and small places with the sea being ice-
covered during two thirds of the year. Two stations at the bottom of the
table, also marked by asterisks, have for unknown reasons also unrealistic
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Figure 2-2. Map of the Nordic countries and the Baltic Sea (and a part of the
North Atlantic) by Ortelius (1570), the oldest map based on latitudes from

sun observations (compiled by Mercator).



Table 2-1. Latitudes (in degrees and minutes) on the map of Ortelius (1570)
and their errors. Stations are in anti-clockwise order along the coasts of the
Baltic Sea and adjacent waters. For explanations of asterisks see text.

Station Map Modern Error

Viborg 64° 30’ 60° 43’ 3° 45’ *
Åbo (Turku) 61 15 60 28 45
Korsholm [Vasa] 65 40 63 04 2 35 *
Torneå (Tornio) 68 50 65 51 3 00 *
Umeå 65 25 63 50 1 35 *
Gävle 61 30 60 40 50
Uppsala 60 25 59 52 35
Stockholm 60 10 59 20 50
Visby 57 25 57 39 - 15
Kalmar 57 10 56 40 30
Älvsborg [Göteborg] 59 15 57 43 1 30
Oslo 60 25 59 55 30
Stavanger 60 05 58 58 1 05
Bergen 60 45 60 24 20
Trondheim 64 45 63 26 1 20
Tromsø 70 45 69 39 1 05
Vardø 70 50 70 22 30
Århus 56 45 56 10 35
København 56 35 55 41 55
Lübeck 54 15 53 52 25
Stralsund 54 00 54 18 - 20
Danzig (Gdansk) 53 45 54 21 - 35
Königsberg (Kaliningrad) 54 30 54 42 - 10
Memel (Klaipeda) 55 10 55 43 - 35
Riga 59 00 56 57 2 05 *
Reval (Tallinn) 61 25 59 26 2 00 *
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errors. The stations thus questioned have been excluded from the further
analysis.

Analysing the remaining 20 stations in Table 2-1 we find two things.
First, their errors in latitude have an average indicating a systematic
error in latitude of

This could be due to some defect in the altitude measurements of the sun
or to some defect in the declinational tables of the sun, or both. A possi-
bility is that the observations have not always been made precisely in
the meridian; such an inaccuracy would make the altitudes too small and
the latitudes correspondingly too large (see Section 2.1). Second, subtrac-
ting these 30’ the remaining errors yield a standard deviation in latitude
of

This is thus the effect of random errors. Some slight regional tendencies
may, however, be noticed. Such effects might be due to the latitudes with-
in a group of stations having been reported from one and the same ship,
or to only one of these latitudes having been measured astronomically
and the other ones having been estimated in relation to the measured
one. The general uncertainty in latitude found here corresponds to about
100 km on the Earth’s surface (1° ≈ 111 km).

On the whole, the impression is that the accuracy in latitude has not
improved considerably since the days of the Vikings. What is new is that
latitude data have been actively collected from a number of harbours
and thereby have made it possible to start mapping the Earth.

Finally, what about the longitudes on the map? Well, longitudes at
that time could not be measured directly. They had to be crudely esti-
mated with indirect methods, typically from recorded courses and esti-
mated distances. Longitudes did not begin to be measured until a
century later; they will appear in Chapter 4.
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3. Stars and latitude: General maps of the second
generation

3.1 The observatory on the island: The stars at Uranienborg

In 1576 the Danish astronomer Tycho Brahe moved to the small and
flat island of Ven (at that time spelt Hven), situated in the entrance to
the Baltic Sea. The King had given him the right to use this island for
erecting an astronomical observatory. The building that Brahe erected
was a remarkable combination of an astronomical observatory and a de-
corated palace, surrounded by a geometrical garden; see Figure 3-1. He
named this establishment Uranienborg (after Urania, the protectress of
astronomy in Greek mythology). Later a group of small separate obser-
vatory buildings was added.

23

Figure 3-1. The observatory of Uranienborg according to Brahe (1596).
Today only small ruins remain.



Brahe constructed his own instruments, designing them to give an
accuracy never achieved before. Moreover, he checked his various in-
struments against each other. His main instrument was a large quadrant
for measuring vertical angles in the meridian, mounted on a stable and
specially painted wall in the main building; see Figure 3-2. With this in-
strument and others he could accurately measure the altitude of stars
and other celestial objects above the horizon; Brahe (1598) claims that
the altitudes could be read within 1/6 of a minute (10”). Observations
were performed almost every clear night during a period of 20 years –
just with the naked eye, as the telescope had not yet been invented. The
observations required a number of research assistants, educated by

24

Figure 3-2. The large quadrant in Uranienborg, used for determining the
latitude of the observatory from the altitudes of stars. The persons in the

foreground are observers; the area above the quadrant itself is covered by
a wall painting. (Brahe, 1598.)



Brahe, one of them being his favourite sister, Sophie Brahe. She must
have been one of the first female scientists in the world.

The first thing to do at the observatory of Uranienborg was to de-
termine its latitude through observing a star; this becomes more accurate
than observing the sun. In Chapter 2 the meridian altitude of the sun at
the equinoxes was used for this purpose through identifying the equa-
tor on the celestial sphere. The stars cannot be used in the same way. The
trick here is to use a star close to the pole to identify the pole on the ce-
lestial sphere. (There is no star in the pole itself, not even the pole star.)

A star close enough to the pole will be above the horizon all the time
and move in a circle around the pole during a day, reflecting the Earth’s
rotation. Such a circumpolar star will transit the meridian twice a day,
once on the upper side of the pole, upper culmination, and once on the
lower side, lower culmination. Let us denote the altitude of the star
above the horizon at upper culmination by hu and at lower culmination
by hl. Then the altitude of the pole above the horizon can be identified as
the mean value of the two observed altitudes of the star, and this is equal
to the latitude of the observation point:

Formula (3-1) for the circumpolar star should be compared with formula
(2-1) for the sun. In (2-1) the latitude is determined from the altitude of the
equator above the horizon, in (3-1) the latitude is determined from the alti-
tude of the pole above the horizon.

Tycho Brahe measured the two meridian altitudes of the pole star as
well as other circumpolar stars to determine the latitude of Uranienborg.
He continued with this work through all the 20 years he spent there. Fi-
nally Brahe (1596) published a value of the latitude, = 55° 54 ½’. This
value is not stated in the text but on a small map of Ven with Uranien-
borg shown at the mentioned latitude, given on the map as 55°54’30”. In
his next work, Brahe (1598) publishes the same map again, now stating
explicitly:

25

(3-1)



”The island itself is very high, as if it were a mountain which you might
ascend, but on top it is flat all over. In the centre, where I have built the
palace of Uranienborg, the altitude of the pole or, what amounts to the
same, the latitude from the equator is 55° 54 ½’, as measured several
times by us with the greatest care.”

The map was later republished in an amended version by one of his as-
sistants, the Dutch astronomer and cartographer Willem Blaeu and his
son Joan Blaeu (1638), in a famous atlas of theirs.

Brahe’s latitude determination was of an unprecedented accuracy.
The modern (correct) value is actually 55° 54 ½‘ – the same as Brahe’s
result. This does not mean, however, that there was no error at all in his
determination. Correcting his observed altitudes and, thereby, his lati-
tude for refraction (see below), we obtain = 55°54’, still yielding an
error in latitude as small as ½’! A summary of this and a few later lati-
tude determinations, to be discussed in Section 3.4, are given in Table 3-1.

With the latitude now fixed Brahe could determine the declination
of any star through

(3-2)

h being the meridian altitude of the star. This is the same formula as
(2-2) for the sun. After having measured the meridian altitudes of a large
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Table 3-1. Latitude determinations (in degrees and minutes) of Uranienborg
in the 1500s and 1600s, and their errors. Correction for refraction applied
here where necessary.

Data source Measured Corrected Modern Error

Brahe (1596) 55° 54.5’ 55° 53.8’ 55° 54.4’ - 0.6’
Brahe (unpubl.) 55 54.7 55 54.0 55 54.4 - 0.4
Picard (1680), pole 55 55.3 55 54.7 55 54.4 0.3
Picard (1680), zenith 55 54.2 55 54.2 55 54.4 - 0.2



number of stars, Brahe (1602) calculated and published their declinations
in a star catalogue. The accuracy of the declinations is of the order a min-
ute of arc. This was a great achievement; the catalogue was later includ-
ed by the German astronomer Johannes Kepler (1627) in his astronomical
tables and became an international standard for nearly a century.

With the declinations in Brahe’s star catalogue the latitude of any
point on the Earth could be determined by measuring the meridian alti-
tude of a star as seen from the point in question,

(3-3)

This formula is identical to (2-3) for the sun.

When applying (3-3) one has to be aware of a special phenomenon
affecting the result. This phenomenon is an apparent increase in the ob-
served altitude of a star caused by refraction of the star light in the at-
mosphere. For this effect Brahe worked out a table showing the
approximate refraction as a function of the observed altitude. He found
that refraction was insignificant for altitudes above 45° (not quite cor-
rect, hence his lack of refraction correction in his latitude for Uranien-
borg), and increased with decreasing altitudes to reach a maximum of 30’
– 35’ at the altitude of 0°, i.e. at the horizon. Accordingly it was impor-
tant to use stars fairly close to zenith for accurate observations.

On the whole, Brahe’s work opened up completely new possibili-
ties to make latitude determinations for accurate mapping. Looking back
we may describe the whole procedure of latitude determination, using ob-
servations of stars, in the following three steps:

1. Determine the latitude of an observatory from the mean of the two
meridian altitudes of a circumpolar star there, according to (3-1).

2. Determine the declinations of stars from the latitude found in item 1
and the meridian altitudes of the stars at the observatory, according to
(3-2).

3. Determine the latitude of an arbitrary station from the declination of
a star as found in item 2 and the meridian altitude of the star at the sta-
tion in question, according to (3-3).
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3.2 The first maps based on star observations

On Christmas Eve in 1602 the Swedish astronomer and historian
Johan Bure was summoned before the King. What was the important
matter to be dealt with such a day? The King wanted Bure to give a re-
port on a determination of the latitude of a tiny place in the north! The
tiny place was Torneå, at the northern end of the Gulf of Bothnia, in what
today is Finland.

Apparently Bure’s report on the latitude determination was satis-
factory. The year after, in 1603, the King ordered Bure’s cousin, the mathe-
matician and cartographer Anders Bure, to prepare a large map of the
Nordic countries. The two cousins worked together, Johan Bure mostly
with building astronomical instruments and determining latitudes, An-
ders Bure mostly with collecting other data and drawing the map. A pre-
liminary map of the northernmost parts, around the Arctic circle,
appeared first. Then, after more than twenty years, Anders Bure (1626)
could present the finalmap over the whole Nordic area, the first one based also
on star observations. It was an impressive map, printed only in a few co-
pies. Soon, however, it was republished in a smaller version in, among
others, the famous atlas of Blaeu and, thereby, widely spread. The map
is shown in Figure 3-3.

Let us now use the graticule on Bure’s original map to investigate
the latitude determinations behind it, most of them probably performed
by Johan Bure or according to his instructions. The stations selected for
the investigation are the same as those used for the Mercator-Ortelius
map in Chapter 2, thereby facilitating a comparison between the two
maps. The 26 stations are listed in Table 3-2 together with their latitudes
read from the map, their latitudes according to modern knowledge (cor-
rect latitudes), and the error in latitude for each station. The map lati-
tudes have been read with an accuracy of 1’. The error is calculated as
map latitude minus modern latitude.

We first note that a group of stations in the middle of the table, mar-
ked by asterisks, have large errors, up to about 30’. These are all Nor-
wegian and Danish stations (including one under temporary Danish
control). This obviously has to do with the political situation in the be-
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ginning of the 1600s. Sweden, at that time including Finland and Estonia,
and Denmark, at that time including Norway in a kind of union, were in
conflict with each other. The Swedes, therefore, could measure latitudes
in more or less the whole area around the Baltic Sea, but not in Denmark
and southern Norway. There Bure apparently had to rely mostly on al-
ready published maps. Accordingly, these stations have been excluded
from the further analysis. In the far north, however, north of the Arctic
circle, there were no borders at that time; most of the people living there
were Sami, with some Norwegians at the Arctic Sea. In this area the
Swedes, as far as can be judged, measured latitudes right up to the Arctic
Sea, hence one station without an asterisk there.
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Figure 3-3. Map of the Nordic countries and the Baltic Sea by Bure (1626),
the first map based on latitudes from star observations. The map shown

here is the atlas version of Blaeu.
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Table 3-2. Latitudes (in degrees and minutes) on the map of Bure (1626) and
their errors. Stations are in anti-clockwise order along the coasts of the Bal-
tic Sea and adjacent waters. For explanations of asterisks see text.

Station Map Modern Error

Viborg 60° 50’ 60° 43’ 7’
Åbo (Turku) 60 29 60 28 1
Korsholm [Vasa] 63 08 63 04 4
Torneå (Tornio) 65 54 65 51 3
Umeå 63 56 63 50 6
Gävle 60 35 60 40 - 5
Uppsala 59 43 59 52 - 9
Stockholm 59 14 59 20 - 6
Visby 57 39 57 39 0
Kalmar 56 44 56 40 4
Älvsborg [Göteborg] 57 25 57 43 - 18 *
Oslo 59 25 59 55 - 30 *
Stavanger 58 38 58 58 - 20 *
Bergen 60 10 60 24 - 14 *
Trondheim 64 06 63 26 40 *
Tromsø 69 34 69 39 - 5
Vardø 70 37 70 22 15 *
Århus 55 57 56 10 - 13 *
København 55 32 55 41 - 9 *
Lübeck 53 48 53 52 - 4
Stralsund 54 15 54 18 - 3
Danzig (Gdansk) 54 19 54 21 - 2
Königsberg (Kaliningrad) 54 40 54 42 - 2
Memel (Klaipeda) 55 47 55 43 - 4
Riga 56 52 56 57 - 5
Reval (Tallinn) 59 14 59 26 - 12



Analysing the remaining 17 stations in Table 3-2 we find two things.
First, there seems to be no systematic error in latitude, only random er-
rors. Second, the errors yield a standard deviation in latitude of

corresponding to an uncertainty of about 10 km on the Earth’s surface.
This is a remarkable improvement in comparison with the Mercator-
Ortelius map in Chapter 2 (or other earlier maps). On the whole we may
conclude that the accuracy of the latitude determinations behind the
map of Bure has increased by one order of magnitude, i.e. by a factor 10
approximately. This should be associated with mostly observing stars
rather than the sun, but much more than that is required.

The considerable increase in latitude accuracy has to depend on cor-
respondingly increased accuracies in both altitudes and declinations of
the observed stars (and sun). The altitudes of the stars were measured
with new instruments, most probably copied from some of those Brahe
had published in one of his books. The declinations of the stars must
have been taken from the recent star catalogue of Brahe (1602). It is strik-
ing that Bure’s report to the King on latitude determination, as well as
the King’s order to prepare the map, were given within one year after the
appearance of Brahe’s star catalogue.

We may conclude that the success of the Bure map of the Nordic area
to a large extent rests on the works carried out by Brahe at Uranienborg.
In particular, the map could hardly have been produced without his star
catalogue, and the star catalogue could not have been produced without
his excellent latitude determination at Uranienborg!

This having been said, we should not underestimate the work per-
formed by Bure and his assistants. They had to travel long distances with
their scientific instruments through forests and wildernesses. The ob-
servations of stars could not be performed during summer since the
nights in the north are too bright. In winter, on the other hand, when it
is dark enough for observing stars, and the snow allows travelling by
sledge, it is often disturbingly cold. And from another positioning expe-
dition made later in the same century (Bilberg, 1695) we have an account
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of typical travelling problems during spring, when it is no longer pos-
sible to transport the instruments by sledge:

”In the north we were hindered by snow and ice, and had several rivers
and sounds to cross, some of them quite wide. Since there were mostly
no ferries one was compelled to put horses and wagons into two boats
tied together, two wheels in each boat. ... The frost in the ground had in
some places broken up, making the wheels sink down; there we had to
walk on foot for half a Swedish mile [5 km] or more. ... The bays of the
sea were still covered by thick ice, and the spruce branches showing the
winter road were still there, but since the ice no longer was connected to
the land nobody dared to cross the bays.”

Under these conditions a standard deviation in latitude of 5’ must be
considered a very successful result.

Now, what about Denmark and southern Norway, where Bure appa-
rently had no access to recent latitude data? Well, here Brahe and a few
of his research assistants had made latitude determinations as a basis for
a future map, intended to cover Denmark and southernmost Norway.
The map, however, never materialized and the results were not available
to the outer world. Nevertheless, the latitude results are known from
Brahe’s annotations; comparisons with modern latitudes indicate a stan-
dard deviation of just a few minutes. Later on the latitudes seem to have
been partly used for the maps of Denmark and southern Norway in
Blaeu’s atlas; Blaeu had, as mentioned earlier, also been one of Brahe’s
assistants.

The latitude of Uranienborg is of particular interest in this connec-
tion. We have seen that this latitude had been published already by
Brahe (1596), 55° 54 ½’. Still the centre of the island of Ven on Bure’s map
is located on latitude 55°45’, which is 9’ to the south. The reason for this
might be that Bure could not correct the position of Ven only, and he did
not have information enough on how to modify the surrounding parts of
the map. Blaeu, on the other hand, did have such information and thus
could later on present more accurate maps of the Danish area; on his
maps showing Denmark, Ven has been located according to the latitude
of Brahe.
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The main competence in positioning and mapping at this time was
concentrated to Denmark and the Netherlands through Brahe and Blaeu.
This is reflected also in the first Nordic text-book on accurate position-
ing, written by the Swedish mathematician and astronomer Bengt Hed-
raeus (1643). The book relies on Brahe concerning the use of stars, and is
published in the Netherlands while the author was studying there.

Towards the end of the century the first chart over the entire Baltic Sea
appeared. It was published by the Swedish naval officer Werner von Ro-
senfeldt and his colleague, the land surveyor Petter Gedda (1694), by
order of the King. From the latitude point of view this chart shows al-
most no improvement since the map of Bure. On the other hand this is
the first chart of the Baltic Sea constructed in the Mercator projection.

Finally we should mention that longitudes, as in Chapter 2, were
still very difficult to measure. Thus also for the maps treated here, longi-
tudes had to be estimated indirectly through travelled distances and di-
rections. Real longitude determinations will appear in Chapter 4.

3.3 The moving pole in the sky

When describing his work with the star catalogue Brahe (1598) gives
the following piece of information:

”For some particularly important stars, 100 altogether, we have … deriv-
ed the right ascensions and declinations, and referred these to two secu-
lar years (namely 1600 and 1700), making it possible by a proportional
calculation to derive values valid for epochs in between.”

This information, and later the catalogue itself, points out a fundamen-
tal problem appearing when using star coordinates for calculating coor-
dinates on the Earth: All star coordinates undergo a systematic and
gradual change with time, a phenomenon known since antiquity as pre-
cession.

The precession means that the Earth’s rotational axis, together with
the Earth itself, continuously changes its direction (but not its inclina-
tion) in space, so that the whole equatorial coordinate system on the ce-
lestial sphere is moving. The process is such that the Earth with its

33



rotational axis traces out a cone in space. The intersection of the rotatio-
nal axis with the celestial sphere, i.e. the celestial pole, thus moves in a
circle on the celestial sphere, the radius of the circle being equal to the
inclination of the Earth’s axis, a full revolution taking 26 000 years. The
origin of the phenomenon was not known at the time of Brahe but later
Isaac Newton (1687), the English mathematician, physicist and astro-
nomer, showed it to be caused by the gravitational forces of the moon
and the sun acting on the rotating Earth. The whole behaviour is identi-
cal to that of a spinning top; in that case it is the gravitation of the Earth
that acts on the rotating body.

Now, the rate of the precession was found by Brahe to be 51”/year
(modern value 50”/year corresponding to a full revolution in 26 000
years), i.e. nearly 1’ per year. After some years this becomes a quite con-
siderable amount. Brahe therefore constructed his table of important
stars in such a way that the user of the table should be able to easily cor-
rect the declinations (and right ascensions) for the precession.

Using Brahe’s (1602) table, the effect of the precession upon latitude
determination can be studied. Imagine someone measuring a latitude for
Bure’s map of 1626 the year before its publication, observing the pole
star (Stella Polaris). From Brahe’s table one can find that precession dur-
ing the years elapsed since 1600 will affect the declination of the star by
9’. If this is not taken into account, the declination will be in error by that
amount. Inserting such an erroneous declination into (3-3) will yield a lati-
tude with the same error of 9’. This is twice as large as the standard de-
viation in the latitude determination as found in Section 3.2.

Imagine further someone measuring a latitude for the first Baltic Sea
chart of 1694 the year before its publication, observing the same star.
From Brahe’s table and formula (3-3) one may conclude that ignoring
the precession will cause an error in latitude of no less than 32’, more
than half a degree. No other phenomenon has such a large effect on the
determination of latitudes on the Earth.

By repeatedly observing the declinations of stars, the English astro-
nomer James Bradley (1748) discovered a small periodical variation in
the precession, known as nutation. Its origin is a variation of the moon’s
orbit, and its period is 18 ½ years; it turned out to be necessary to correct
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also for that when latitude determinations became increasingly accurate
in the 1700s.

3.4 New observatories at Paris and Greenwich

In 1667, nearly 100 years after the foundation of Brahe’s observa-
tory at Uranienborg, an astronomical observatory was founded in Paris.
Here the French astronomer and geodesist Jean Picard started working
on a project of mapping France. He introduced the use of telescopes
when making astronomical and geodetic measurements. This enabled
him, among other things, to determine a quite accurate value of the
Earth’s radius. When the observatory had been established, one of the
first tasks was to determine the positions of Paris and Uranienborg rela-
tive to each other. For this purpose Picard travelled to the island of Ven,
in 1671. Arriving there he realized that the observatory had, sadly
enough, been demolished into ruins by order of the Danish king after
Tycho Brahe had left it, and the island itself had recently been ceded by
Denmark to Sweden.

Picard, together with the Danish astronomer Ole Rømer, now de-
termined the latitude of the ruins of Uranienborg. This was made in two
different ways, published by Picard (1680). First, the latitude was deter-
mined using a circumpolar star, through (3-1), resulting in 55°54’40”
(after correction for refraction). Second, the latitude was determined
using a star close to zenith (where refraction is zero) with its declination
from Paris, through (3-3), resulting in 55°54’15”. Both values are slightly
larger than those of Brahe (corrected for refraction), and the average
comes close to the modern value; see Table 3-1. The unpublished value
of Brahe in the table is cited by Picard as being the result of the later and
thereby best part of Brahe’s measurements. The second of Picard’s values
was later adopted as a starting value in the Swedish coastal triangulation
around the Baltic Sea (Chapter 5).

A few years after the establishment of the observatory in Paris, a si-
milar astronomical observatory was founded at Greenwich outside Lon-
don, in 1675. This was more aimed at improving navigation at sea. Here
the English astronomer John Flamsteed, after having determined the lati-
tude of the observatory, spent most of his years with producing a new
star catalogue. This catalogue of Flamsteed (1725) had an accuracy one
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order of magnitude better than Brahe’s and thus superseded his. In Paris
the French astronomer and geodesist Jacques Cassini (1740), based on
the determination of the latitude of that observatory, also produced a ca-
talogue of stars and other celestial objects. The new star catalogues from
Greenwich and Paris were soon used for determining latitudes for a new
map of Sweden and Finland (Chapter 4).
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4. Moons and longitude: General maps of the third
generation

4.1 The Jupiter moons at Uppsala

The basic principle for finding the longitude of a station with respect
to a zero meridian at an observatory is quite simple. The longitude is
equal to the difference in local time between the station and the observa-
tory. When the principle is to be applied in reality things get more com-
plicated. There are two problems to be handled. The first one is how to
determine the local times; even if you have constructed good clocks they
have to be set. The second one is how to find out the two local times at
one and the same instant for two widely separated points on the Earth.

The easiest way to determine the local time is to use the sun. When
the sun is in the meridian in the south, local solar time is by definition
precisely 12 hours (ignoring here the difference between true and mean
solar time). This can be used for setting a sun dial or a more advanced
clock, at the observatory giving the time T0, and at the station giving the
time T.

A more accurate way of determining the local time is to use the
meridian transit of a star. This means using sidereal time, defined by
the Earth’s rotation relative to the stars rather than to the sun. Such a
method was not applied until later.

The longitude of the station relative to the observatory with the
zero meridian now becomes

(4-1)

This is the difference in local time between the station and the observa-
tory. Normally the time difference is then converted to angular units (1
hour = 15°).

Now, to measure the two local times in (4-1) at one and the same in-
stant one would need a well-defined event that could be observed simul-
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taneously from the two positions. Such events were the eclipses of the
moons of the planet Jupiter (on rare occasions also eclipses of our own
moon or the sun).

When the French astronomer and geodesist Jean Picard in 1671 re-
determined the latitude of Uranienborg (Section 3.4), he also determined
its longitude relative to Paris according to the above principles, using
the eclipses of the moons of Jupiter. This can be considered as the first
reasonably accurate determination of a longitude; it was made possible
by the introduction of the telescope and the recently invented pendulum
clock. We will comment on the result in Section 4.3. Picard’s co-worker at
Uranienborg, the Danish astronomer (and later mayor of København)
Ole Rømer, then accompanied Picard to Paris, continuing to observe Ju-
piter’s moons. There he found that certain irregularities in the observed
times of the eclipses of the moons were dependent on the varying dis-
tance between the Earth and Jupiter. From this, Rømer (1676) could make
the very first determination of the velocity of light.

In 1739 the Swedish geophysicist and geodesist Anders Celsius –
today mostly known for his temperature scale – founded an astronomi-
cal observatory at the University ofUppsala; see Figures 4-1 and 4-2. This
observatory was to play a special role in the early work with longitude
determinations. Celsius (1741) writes:

”During the work with my astronomical observations I have especially
paid attention to such phenomena, whereby the positions of places here
in Sweden as well as abroad, with respect to their longitude east or west
of the Uppsala meridian, may be more accurately marked on the maps
than hitherto.”

One of Celsius’ research assistants here, Pehr Wargentin, an astronomer
and statistician, now specialized in Jupiter’s moons.

Jupiter has four large moons, discovered by Galilei when he for the
first time used a telescope to study the sky. The four moons move in or-
bits around Jupiter, the innermost moon (Io) having the shortest period,
only 42 hours. This means that an eclipse occurs at least every second
day, thus providing frequent and well-defined events useful for longi-
tude determination provided the planet can be clearly observed (which
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it often cannot). However, each moon, in addition to being governed by
the gravitation of Jupiter, is perturbed by the gravitations of the other
moons. Hence the orbital motions of the moons become irregular, their
periods not being constant. This makes it difficult to predict when the
eclipses will occur, something that was essential for the determination of
longitudes.

Wargentin systematically studied these irregularities in the motions
of Jupiter’s moons. Using an intuitive statistical method, Wargentin
(1741) succeeded in computing a set of tables for the Jupiter moons, pre-
dicting the times of their future eclipses. (Sadly enough his tables were
stolen on a journey just before their printing, so he had to spend nearly
two years reconstructing them!) Such tables, although rather inaccurate,
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Figure 4-1. The observatory of Uppsala at the time of Celsius, when it was
established as a Nordic zero meridian. (Engraving by F Akrel 1769.)



had already been produced at the observatories of Paris and Greenwich.
It soon turned out, however, that the tables produced by Wargentin at
Uppsala were superior in accuracy to those of both Paris and Greenwich.
From now on Wargentin’s tables became a sort of international standard;
repeatedly improved versions by Wargentin himself were included in
the astronomical tables of Paris, Greenwich and Berlin for several deca-
des.

Wargentin spent nearly his whole life observing Jupiter’s moons
and improving his tables. When Jupiter’s moons had been observed for
longitude purposes at some station in Europe, the largest probability of
finding corresponding observations was at the observatory of Uppsala,
later Stockholm when Wargentin moved there. Because of this, Uppsala,
and later Stockholm, became an international key observatory for longi-
tude determinations in their early days.
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Figure 4-2. The old Celsius observatory in Uppsala today.



Looking back we may describe the whole procedure of longitude de-
termination, using observations of moons in combination with sun (star) ob-
servations, in the following three steps:

1. Determine the time at an observatory using the meridian transit of the
sun (or a star). Set a clock according to that.

2. Determine the time at an arbitrary station using the meridian transit
of the sun (or a star). Set a clock according to that.

3. Observe, using the clocks, the times for an eclipse of a Jupiter moon (or
for a lunar or solar eclipse) at both the observatory and the station. The
time difference obtained is equal to the longitude of the station relative
to the observatory, according to (4-1).

Item 3 above may be replaced by a simplified version requiring only one
time observation but yielding a lower accuracy:

3*. Observe, using the clock, the sidereal time for an eclipse of a Jupiter
moon at the station, and take the corresponding time at the observatory
from a table of predictions valid there. The time difference, again, is the
longitude of the station relative to the observatory.

4.2 The first maps based also on moon observations

Hitherto all maps had been based on determinations of latitudes,
whereas longitudes had not been possible to measure. They had only
been roughly estimated using indirect methods. The activities at the new
observatory of Uppsala now opened up the possibility to construct maps
based also on longitude determinations. Since longitudes were more
complicated to measure than latitudes, however, the longitude determi-
nations had to be limited to a small number of stations.

The first Nordic longitude measurements were carried out between
København, Uppsala and Torneå. In København there was the observa-
tory on top of the church tower of Rundetårn [Round tower], founded al-
ready by one of Brahe’s assistants, the Danish astronomer Christian
Longomontanus. Using lunar eclipses observed both there and at the ob-
servatory of Uppsala, Celsius (1741) determined the longitude difference

41



between København and Uppsala. In Torneå in the far north a small pri-
vate observatory had been erected by the Swedish-Finnish geodesist An-
ders Hellant, an assistant during the French arc measurement there (see
Chapter 5). Using eclipses of Jupiter’s moons observed both there and
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Figure 4-3. Map of Sweden, Finland and the Baltic Sea, including small
parts of Denmark and Norway (Biurman, 1747), the first map based also

on longitudes from moon observations.



at the observatory of Uppsala, Celsius (1743) determined also the longi-
tude difference between Torneå and Uppsala. These longitudes were in-
cluded as an important part of the basis for a newmap of Sweden, Finland
and the Baltic Sea, the first one based also on longitude determinations. The
map was constructed by the Swedish map engraver Georg Biurman
(1747), who had earlier been travelling and working together with Cel-
sius; it is shown in Figure 4-3.

The longitudes of Celsius used for Biurman’s map, together with
some comparisons, are given in Table 4-1. While the estimated longi-
tudes on the earlier maps show errors of one or several degrees, the first
measured longitudes applied for the new map show errors of only some
minutes. Although very few, the measured longitudes were essential for
the mapping. Because of their geographical distribution, widely separat-
ed in southwest-northeast, they contribute considerably to correcting
and controlling the map.

In the following years another five longitude stations were estab-
lished, all of them with the use of Jupiter’s moons. The total of 8 longitude
stations, mainly at observatories or universities, together with their longi-
tudes, are listed in Table 4-2. From their errors, calculated as measured
minus modern longitudes, we find a standard deviation in longitude of
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Table 4-1. Longitudes (in degrees and minutes) according to the determina-
tions of Celsius used for the map of Biurman (1747), and comparisons with
the earlier maps of Ortelius (1570) and Bure (1626) as well as with modern
values.

Station 1570 map 1626 map 1747 map Modern
(Celsius)

Torneå (Tornio) 9° 05’ 5° 19’ 6° 34’ 6° 31’
Uppsala 0 00 0 00 0 00 0 00
København - 5 30 - 6 35 - 4 58 - 5 04



This value corresponds to close to half a minute in time. It also corre-
sponds to an uncertainty of about 5 km on the Earth’s surface. This
means that the longitudes now had reached an accuracy comparable to
that of the latitudes one century ago (Section 3.2).

At the same time the accuracy of latitude determinations had in-
creased, starting with Horrebow (1735) in København and Celsius (1739)
at Uppsala. This was due to new instruments with telescopes, new star
catalogues from Greenwich and Paris, and new methods of calculating
disturbing effects. In Table 4-3 are listed the same stations as in Table
4-2, but now with their latitudes. The errors here yield a standard de-
viation in latitude of only

corresponding to 200 m on the Earth’s surface. Thus a considerable gap
in accuracy remained between latitude and longitude determinations,
together known as astronomical positioning.
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Table 4-2. Longitudes (in degrees and minutes) according to determinations
relative to Uppsala made in the 1740s and 1750s, and their errors. Stations are
ordered from north to south.

Station Data source Measured Modern Error

Vadsø Hellant (1752) 12° 14’ 12° 07’ 7’
Torneå (Tornio) Celsius (1743) 6 34 6 31 3
Härnösand Schenmark (1754) 0 15 0 18 - 3
Åbo (Turku) Gadolin (1753) 4 31 4 38 - 7
Uppsala --- 0 00 0 00 -
Stockholm Wargentin (1761) 0 25 0 25 0
København Celsius (1741) - 4 58 - 5 04 6
Greifswald Mayer (1756) - 4 03 - 4 14 11



The Härnösand station in Tables 4-2 and 4-3 has a quite special
background. In the 1600s the Paris observatory had determined a very
approximate value of the distance to the sun. In the early 1750s French
scientists now wanted to re-determine the distance to the sun with bett-
er accuracy. This could be accomplished by making simultaneous obser-
vations from an extremely southern station, decided to be Cape Town in
South Africa, and a few extremely northern stations on the same longi-
tude as Cape Town. The optimum northerly stations turned out to be
Stockholm and Härnösand! The results, first published by Wargentin
(1756), soon proved to be less accurate than expected, but renewed at-
tempts with better methods some years later were quite successful. An
important requirement here was the accurate knowledge of the coordi-
nates of the observation points.

The most remarkable of the stations in Tables 4-2 and 4-3 is Vadsø,
situated on the coast of the Arctic Sea. Its position was determined by
Hellant (1750, 1752); again northern Norway was measured by the Swed-
es, this time just a few years before the border there was defined. Hellant
had specialized in performing geodetic and geophysical measurements
north of the Arctic circle. It was certainly not an easy task transporting
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Table 4-3. Latitudes (in degrees and minutes) according to accurate determi-
nations made in the 1730s, 1740s and 1750s, and their errors. Stations are or-
dered from north to south.

Station Data source Measured Modern Error

Vadsø Hellant (1750) 70° 04.7’ 70° 04.6’ 0.1’
Torneå (Tornio) Maupertuis (1738) 65 50.8 65 50.9 - 0.1
Härnösand Schenmark (1754) 62 38.0 62 37.9 0.1
Åbo (Turku) Gadolin (1753) 60 27.2 60 27.1 0.1
Uppsala Celsius (1739) 59 51.7 59 51.7 0.0
Stockholm Wargentin (1759) 59 20.5 59 20.5 0.0
København Horrebow (1735) 55 41.0 55 40.9 0.1
Greifswald Mayer (1756) 54 04.4 - -



scientific instruments in the cold winter darkness through the vast wil-
derness in the north. Hellant (1750) reports:

”Our sledges, or rather half-boats [Laplander’s sledges], by which you go
with reindeer, swam through the snow when I went along the Teno river
to Norway. … At the winter solstice at Vadsø you see stars with the
naked eye all through the day.”

In addition to the accurate stations of Tables 4-2 and 4-3, latitudes
could now be measured anywhere for general mapping purposes with-
in some 0.5’. Longitudes, on the other hand, were so complicated to mea-
sure that they were restricted mainly to the few stations in the tables.
Elsewhere longitudes still had to be indirectly determined from travelled
distances and directions, but there were now at least a set of longitude
stations putting constraints on these measurements. The improved po-
sitioning led to the first series of provincial maps showing latitudes and
longitudes.

4.3 Connections to Paris and Greenwich

As long as one keeps to making a map over the Nordic area it is suf-
ficient to relate the longitudes to a Nordic zero meridian like Uppsala. In
a more global perspective, important for marine charts, the Nordic longi-
tudes need to be related also to some more internationally recognized
initial meridian, i.e. Paris or Greenwich.

In the beginning, longitudes were determined successively from
Paris via Uranienborg to København and Uppsala; see Table 4-4. It start-
ed, as mentioned earlier, with Picard (1680) together with Rømer deter-
mining the longitude difference between Paris and Uranienborg. In
connection with that, the difference between Uranienborg and Køben-
havn was found through various local measurements. Later Celsius
(1741), as also mentioned earlier, determined the longitude difference
between København and Uppsala.

In 1748 a new astronomical observatory was founded on a hill just
outside Stockholm by the Royal Swedish Academy of Sciences; see Figures
4-4 and 4-5. Wargentin moved there from Uppsala, continuing and in-
tensifying his internationally renowned studies of Jupiter’s moons. Soon
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he determined also the longitude difference between Uppsala and Stock-
holm; see again Table 4-4.

After 12 years at the Stockholm observatory Wargentin had collect-
ed a large number of observations of the Jupiter moons. From the ob-
servatory in Paris he received their Jupiter observations during the same
period. Wargentin (1761) writes:

”I have, during the last 12 years, had the opportunity to make a number
of reliable observations at the observatory in Stockholm, with the pur-
pose of finding out its geographical longitude. … Since the observations
of the first or innermost moon of Jupiter give the most reliable values of
the longitude, without troublesome calculations, I will keep to them in
order to obtain the difference between the meridians of Paris and Stock-
holm.”

Wargentin’s result for the longitude of Stockholm relative to Paris is
= 15°42’30”. This is 5’ less than the earlier longitude determined piece

by piece. From Table 4-4 we note that this discrepancy is almost wholly
due to errors in those older determinations. In the same table we find
that the error in Wargentin’s longitude determination amounts to less
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Table 4-4. Successive longitude differences (in degrees and minutes) from
Paris according to determinations between observatories made up to the
1750s, and their errors.

Observatories Data source Meas. Modern Error

Paris – Uranienborg Picard (1680) 10° 32.5’ 10° 21.6’ 10.9’
Uranienborg – København Bartholin (1672) - 7.2 - 7.2 -
København – Uppsala Celsius (1741) 4 57.5 5 03.9 - 6.4
Uppsala – Stockholm Wargentin (1761) 25.0 25.0 0.0

Paris – Stockholm Sum of above 15 47.8 15 43.3 4.5

Paris – Stockholm Wargentin (1761) 15 42.5 15 43.3 - 0.8



than 1’. It is interesting to compare this with the error according to Table
3-1 in the latitude determination by Brahe at Uranienborg one and a half
century earlier. The errors are of the same order. This clearly illustrates
the difficulties in finding the longitude, where times are involved, com-
pared to latitude, where angles are involved.

After another 12 years Wargentin (1773) had improved the longi-
tude difference between Paris and Stockholm, using the Jupiter moons,
to = 15°43’15”. This yields an error as small as 0.1’, probably the
world’s best longitude determination at that time; see Table 4-5. At the
same time the Swedish-Finnish-Russian astronomer Anders Johan Lex-
ell (1773) had calculated the longitude difference from a solar eclipse, giv-
ing an error of 0.5’.

Wargentin (1777) now turned his interest towards Greenwich; see
Table 4-5. Using 10 years of observations of Jupiter’s moons from the ob-
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Figure 4-4. The observatory of Stockholm, specialized in longitude determi-
nation (Wargentin, 1761).



servatories of Stockholm and Greenwich he found a longitude difference
between them of = 18°05’15”. This yields an error of 1.7’, clearly less
accurate than the difference between Stockholm and Paris. Hence this
error must primarily depend on the observations at Greenwich.

Combining the Stockholm longitude relative to Greenwich with that
relative to Paris, Wargentin (1777) could determine the important longi-
tude difference between the observatories of Greenwich and Paris; see
again Table 4-5. Actually, the head of the Greenwich observatory, the
British astronomer Nevil Maskelyne, known for the creation of the Nau-
tical Almanac, had asked Wargentin to calculate the longitude difference
between Greenwich and Paris. Maskelyne (1787) writes:

”In the year 1776, I requested the late Mr. Wargentin, the learned secre-
tary of the Royal Academy of Sciences at Stockholm, and author of the
improved tables for computing the eclipses of Jupiter’s satellites, who
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Figure 4-5. The old observatory of Stockholm today.



collected observations of them from the principal observatories of Eu-
rope, … to inform me what difference of meridians of Greenwich and
Paris resulted from my last ten years observations of the eclipses of the
first satellite of Jupiter compared with those by M. Messier at Paris. In the
answer which he favoured me with ... he deduced the difference of me-
ridians of the Royal observatories of Greenwich and Paris ... from a com-
parison of mine and the Parisian observations, with the intermediate
help of his own made at Stockholm 9 m 26 s [2° 21.5’]; and from the
whole he inferred the difference of meridians to be 9 m 25 s [2° 21.2’].”

Wargentin’s final value for the difference shows an error of 1.0’. It is
quite interesting that one of the official values at this time of the longi-
tude difference between the fundamental observatories of Greenwich
and Paris was determined in Stockholm, through Wargentin’s observa-
tions of his beloved Jupiter moons there.

Also when the Danish astronomer and geodesist Thomas Bugge
(1779) determined the longitude of the København observatory relative
to Paris he partly did so via Stockholm; see Table 4-5. In addition to the
Jupiter moons Bugge also used a solar eclipse, giving practically the
same result.
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Table 4-5. Longitude differences (in degrees and minutes) between Paris,
Greenwich, Stockholm and København according to determinations made
in the 1760s and 1770s, and their errors.

Observatories Data source Meas. Modern Error

Paris – Stockholm Wargentin (1773) 15° 43.2’ 15° 43.3’ - 0.1’

Greenwich – Stockholm Wargentin (1777) 18 05.2 18 03.5 1.7

Greenwich – Paris Wargentin (1777) 2 21.2 2 20.2 1.0
(partly via Stockholm) Maskelyne (1787)

Paris – København Bugge (1779) 10 16.6 10 14.4 2.2
(partly via Stockholm)



A few years later there was a break-through for the chronometer, a
portable clock that could bring Greenwich time across the sea, invented
by the English carpenter John Harrison (and for a long time combated by
Maskelyne). The chronometer tolerated smooth movements; this sud-
denly made possible the determination of longitudes on board ships dur-
ing navigation and in harbours. A zero meridian time could now simply
be transported anywhere and compared with the local time from sun (or
star) observations. However, while the chronometer was constructed to
be transported on sea, it did not work very well when transported on
land.

Referring to the longitude formula (4-1) we may here give an over-
view of the two principle methods to acquire coincidence in timing at two
different places for longitude determination:

A. Observe a well-defined event in the sky (an eclipse of a Jupiter moon)
from both places, and afterwards send a letter with the time from one
place to the other (this chapter).

B. Transport the time with a portable clock (chronometer) from one place
to the other (next chapter). Later on time could also be transported im-
mediately by telegraph.

On the whole, longitudes continued to be difficult to determine, ex-
cept on board ships on the sea. On land, on the other hand, a new method
of accurate positioning entered the scene: triangulation. This, combined
with the astronomical positioning at observatories, would become the
foundation of future mapping, as will be seen in the following two chap-
ters.
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5. Stars, clocks and triangles along coasts: Marine
charts

5.1 Solving an international controversy: The arc at the Arctic
circle

In the 1730s an international scientific controversy with wide im-
plications arose concerning the shape of the Earth. In England Newton
had, based on his theories of gravitational and centrifugal forces, arriv-
ed at the conclusion that the Earth must be a body somewhat flattened
at the poles. In France Cassini at the Paris observatory had, based on his
geodetic measurements across the country, arrived at the conclusion that
the Earth must be a body somewhat flattened at the equator, thus con-
tradicting Newton’s theories. In order to solve the problem the French
Academy of Sciences decided to organize two scientific expeditions, one
to the south, close to the equator, and one to the north, as far north as
possible.

By the time the plans for the northern expedition were being dis-
cussed in France, Celsius arrived there from Sweden. He was making a
study tour to European universities and observatories, and he happened
to arrive in Paris at the right moment. Following a proposal from Celsius,
the French Academy of Sciences decided to send the northern expedi-
tion to northern Sweden (now Sweden and Finland), more specifically to
the area of Torneå at the end of the Gulf of Bothnia, close to the Arctic
circle. Celsius had never been so far north himself, but his grandfather,
the astronomer and geographer Anders Spole, had been there together
with the mathematician Johan Bilberg to make the first scientific studies
of the midnight sun; Bilberg (1695) had published a report on this. Cel-
sius now became a member of the expedition, which was headed by the
French physicist Pierre Louis Moreau de Maupertuis and his mathema-
tical colleague Alexis Claude Clairaut.

The main task for Maupertuis’ expedition was to perform ameridian
arc measurement, i.e. to determine the distance as well as the latitude dif-
ference between the end points of a meridian arc. A comparison of such
a result in the north with a corresponding result from an arc in the south,
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in France or at the equator, would give information on the flattening of
the Earth. For an Earth flattened at the poles a meridian arc of a certain
latitude difference will be longer closer to the pole, because of the small-
er curvature there, and shorter closer to the equator, because of the larger
curvature there. For an Earth flattened at the equator the relation will be
the opposite.

The latitude difference of the meridian arc could be found by de-
termining the latitudes of the end points through star observations. The
southern end point was Torneå church (Figure 5-1), on the coast of the
Gulf of Bothnia, and the northern end point was the mountain Kittis-
vaara, almost 1° to the north.
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Figure 5-1. Torneå (Tornio) church close to the Arctic circle, southern end
point in 1736 of the French arc measurement, led by Maupertuis.



The distance between the end points, on the other hand, was far too
long to be measured directly; it had to be found using a special method,
triangulation. The idea of triangulation stems from Mercator’s teacher
Gemma Frisius 1533; it was tried in a primitive form by, among others,
Tycho Brahe. However, it was through Picard’s works in France since
1669 that the method of triangulation could be developed into something
useful.

Triangulation now was applied in the following way. First, a com-
paratively short distance, a baseline, was measured with rods on the ice
of the Torne river. Maupertuis et al (1738) vividly describe the problems
thereby:

”Judge what it must be to walk in snow two foot deep, with heavy poles
in our hands, which we must be continually laying upon the snow and
lifting again; in a cold so extreme, that whenever we would take a little
brandy, the only thing that could be kept liquid, our tongues and lips
froze to the cup, and came away bloody.”

Next, horizontal angles were measured in a network of triangles, the
sides of the triangles being sight lines between stations on hills and
mountains along the Torne river, all the way from the southern end point
to the northern one. Included in this network were the end points of the
baseline. Finally, using trigonometry, the distance between the southern
and the northern end points of the meridian arc could be computed from
the length of the baseline and the angles in the triangulation network.

Knowing now the distance as well as the latitude difference of the
meridian arc, its curvature could be computed. Comparing this result of
the northern expedition with a corresponding result in France, and later
on with the result from the equatorial expedition, Maupertuis et al (1738)
found that the meridional curvature of the Earth is smaller closer to the
pole and larger closer to the equator. From this they concluded that the
Earth is flattened at the poles; in the words of Maupertuis et al (1738):

”The length of the arc of the meridian intercepted between the two pa-
rallels that pass through the observatories of Torneå and Kittis is 55 023
½ toises [107 243 m]. The amplitude of this arc being 57’27”, the degree
of the meridian at the Polar circle is greater by 1 000 toises [1 949 m] than
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it should be according to Mr. Cassini. … Whence it is evident that the
Earth is considerably flattened towards the poles.”

This conclusion was confirmed by the gravity measurements made by
the expedition, analyzed by Clairaut (1743). Although the accuracy of
Maupertuis’ result later turned out to be clearly less than he himself had
imagined, the total result of the expedition supported the theories of
Newton.

5.2 The triangles across the Baltic Sea

The result of Maupertuis’ expedition to the north not only had sci-
entific but also practical consequences. In France triangulation had been
applied by Cassini in order to construct a foundation for an accurate map
of the whole country. The results from the north now brought about a
partial remeasurement of the French triangulation, using one of the ex-
pedition’s two angle instruments, to improve the foundation of the map.
The triangulation network of France was completed and published by
Cassini’s son and successor at the Paris observatory, César Francois Cas-
sini de Thury (1744). This was the first triangulation in the world for con-
structing a national land map. The map itself, in a large number of sheets,
took another half a century to produce.

The other of the two angle instruments of Maupertuis’ expedition
was used in another triangulation for accurate mapping: a triangulation
across the Baltic Sea between Sweden and Finland, via the Åland Islands. In the
Nordic area this was the first triangulation for official mapping.Moreover,
it appears to have been the first triangulation in the world for marine
purposes, resulting in nautical charts as well as a land map.

The Åland Islands include an extensive archipelago comprising
thousands of islands and skerries. Between and across these islands ran
the important ”Post route”, used for transporting not only mail and
goods but also diplomats and other people travelling between the wes-
tern and eastern parts of northern Europe. This area certainly was in
need of a more reliable mapping. The triangulation across the Baltic Sea
was organized as a cooperation between the Royal Survey Office, the
University of Åbo and, in the background, the University of Uppsala.
The triangulation was carried out between 1748 and 1752 under the lea-
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dership of the Swedish-Finnish geodesist Jacob Gadolin, a former stu-
dent of Celsius. The triangulation network covered 3 ½ ° in longitude,
approximately along the latitude 60°, from Väddö in eastern Sweden
across the Åland Islands to Åbo in south-western Finland; see Figure 5-2.
The principle for determining coordinates through triangulation may be
described as follows, with this triangulation as a typical example.

The first step in the triangulation is to make an astronomical determi-
nation of latitude and longitude of one station. This is necessary in order to
position the whole triangulation network on the Earth. The astronomical
station selected in our case was Åbo cathedral.

The second step is to make an astronomical determination of an azi-
muth, the azimuth being the horizontal angle between the direction to-
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Figure 5-2. The central part of the triangulation network across the Åland
Islands, established 1748 – 1752 (Gadolin, 1757; Hällström, 1815). Some of

the stations are also modern triangulation stations.



wards the north and one of the sides in the triangulation network. This
is necessary in order to orientate the whole triangulation network on the
Earth. In this case the azimuth of a triangle side along the west coast of
Åland was determined.

The third step, and the most time-consuming work, is to measure all
horizontal angles between the triangulation stations in the network. To
make such measurements one first has to select suitable stations with
good sights towards other stations, and on each station erect some kind
of signal to be measured against from the neighbour stations. In our case
of the Åland Islands the triangulation stations could be selected in a very
special way, namely among the beacon cliffs there. They constituted an
ancient warning system in case of threatening attacks. Not only did these
cliffs have excellent sights between them, but they were also already mo-
numented with signals in the form of wooden beacons to be set fire on
in case of emergency. In addition some churches with towers as well as
skerries with nautical constructions could be used for triangulation. In
total the triangulation network comprised some 40 stations, with sight
lines of up to 40 km (in one case 70 km).

The fourth step is to measure the length of a baseline. When select-
ing a suitable baseline one should look for a reasonably flat surface close
to sea level. In the case of the Åland Islands there appeared an ideal and
almost unique possibility: The baseline could be measured directly on
the ice of the sea. A 10 km distance was measured on a part of the ice-
covered sea at Åland surrounded by sheltering islands, thereby reducing
possible movements of the sea ice.

The final step is to compute the coordinates of all triangulation sta-
tions. Starting from the latitude and longitude of the astronomical sta-
tion, and applying trigonometry to the angles and the baseline in the net
of triangles, the latitudes and longitudes of all triangulation stations can
be found. The calculations are complicated by the curvature of the Earth,
but we leave that aside until Chapter 6.

Let us summarize the whole procedure of triangulation in the follow-
ing five steps:
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1. Determine astronomically the latitude and the longitude of one sta-
tion, using the principles described in Chapters 3 and 4.

2. Determine astronomically the azimuth of (at least) one triangle side.

3. Measure all horizontal angles in the triangles of the network.

4. Measure the length of (at least) one baseline, also being a side of a tri-
angle in the network.

5. Starting from the astronomical station in item 1 and the azimuth in
item 2, and using the angles in item 3 and the length in item 4, calculate
the latitude and the longitude of each station in the network.

The resultant coordinates of the triangulation across the Baltic Sea
and the Åland Islands were presented by Gadolin (1757). These coordi-
nates, together with other ones from connected triangulations perform-
ed later, served as a foundation for the construction of the first accurate
nautical chart, produced by the naval officer and hydrographer Johan
Nordenankar (1783); see further next section. The coordinates were also
used for constructing a land map, produced by the land surveyor Eric af
Wetterstedt (1789).

Let us now investigate the results of this historical triangulation.
When doing so we utilize the recomputation of the whole triangulation
executed by the Finnish-Swedish geodesist and cartographer Carl Peter
Hällström (1815), using improved mathematical methods. For the investi-
gation 13 main stations are selected, reasonably distributed within the
triangulation network and having long sight lines to several neighbour
stations. These stations are listed in Table 5-1. The first three of them are
situated in Finland, the following nine ones on Åland, and the last one
in Sweden. For each station are given its measured and modern latitude,
in the upper part of the table, and its measured and modern longitude,
in the lower part of the table. These coordinates need some explanation
before we enter into their analysis.

We already know the astronomical error in the starting point at the
Åbo cathedral; it is given in Chapter 4. As we are not interested in that
kind of error for investigating the accuracy of the triangulation we could
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Table 5-1. Coordinates of the triangulation across the Baltic Sea via the Åland
Islands in 1748 – 1752 (in degrees, minutes and seconds), and their errors.
Stations are ordered from east to west. Data sources: Gadolin (1757) and
Hällström (1815).

Station Meas. lat. Modern lat. Error

Åbo (Turku) cathedral 60° 27’ 06” 60° 27’ 09” - 3”
Prostvik beacon cliff 60 12 43 60 12 43 0
Korpo church 60 09 47 60 09 47 0
Kumlinge beacon cliff 60 14 54 60 14 52 + 2
Ulversböte beacon cliff 60 06 30 60 06 28 + 2
Bomarsund beacon cliff 60 13 05 60 13 04 + 1
Väderberg beacon cliff 60 20 47 60 20 48 - 1
Jomala church 60 09 21 60 09 18 + 3
Getaberg beacon cliff 60 23 09 60 23 10 - 1
Havisberg beacon cliff 60 08 45 60 08 45 0
Högsten nautical beacon 60 21 15 60 21 13 + 2
Signilskär nautical cairn 60 12 09 60 12 04 + 5
Stacksten [Väddö] beacon cliff 59 57 57 59 57 57 (0)

Station Meas. long. Modern long. Error

Åbo (Turku) cathedral 22° 16’ 33” 22° 16’ 40” - 7”
Prostvik beacon cliff 22 02 57 22 03 02 - 5
Korpo church 21 33 44 21 33 50 - 6
Kumlinge beacon cliff 20 47 24 20 47 05 + 19
Ulversböte beacon cliff 20 33 52 20 33 46 + 6
Bomarsund beacon cliff 20 13 50 20 13 40 + 10
Väderberg beacon cliff 20 03 31 20 03 27 + 4
Jomala church 19 56 59 19 56 59 0
Getaberg beacon cliff 19 50 33 19 50 40 - 7
Havisberg beacon cliff 19 45 22 19 45 19 + 3
Högsten nautical beacon 19 27 30 19 27 13 + 17
Signilskär nautical cairn 19 20 32 19 20 15 + 17
Stacksten [Väddö] beacon cliff 18 50 18 18 50 18 (0)



eliminate it by assigning this station its modern coordinates, and then
apply the same correction to all the other stations. In this way we also eli-
minate a principal difference between astronomical and modern coordi-
nates to be discussed in Chapter 7. However, since the main part of the
network has a rather weak connection to Åbo cathedral, it seems more
relevant to assign the modern coordinates to the other end station,
Väddö beacon cliff; this is a modern triangulation and satellite position-
ing station as well. Accordingly all the original measured coordinates of
the triangulation stations have been shifted by a constant in latitude and
another constant in longitude (the shift in longitude also contains a
change of the zero meridian). These translated coordinates are the ones
given in Table 5-1 as measured coordinates.

The modern coordinates in Table 5-1 are given in a system based on
satellite positioning (see further Chapter 7). All stations have been iden-
tified on present-day detailed maps and charts, and their coordinates
taken from there; some of the stations are also modern triangulation sta-
tions. For the initial station, the western end station Väddö beacon cliff,
the coordinates have been checked against the satellite positioning per-
formed there. We should also mention that the effect of different refe-
rence ellipsoids (see Chapter 6) used for the measured and modern
coordinates, respectively, is negligible in this case.

The error of a measured coordinate in Table 5-1 is calculated as the
difference between measured and modern coordinates. Starting with the
latitudes we find that the standard deviation in latitude amounts to

No systematic error can be found. Turning to the longitudes we notice
some effects that do not appear quite random; they might be due to the
design of the network with long sights and small angles in the longitu-
dinal direction. Eliminating the small non-zero average of the errors (de-
pendent on the choice of the initial station) we find that the standard
deviation in longitude amounts to

(bearing in mind that the length of 1” of longitude at the latitude 60° is
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one half of the length of 1” of latitude). Thus the overall uncertainty of
the coordinates of the triangulation may be said to be about 100 m.

To be able to easily compare the above values with the earlier un-
certainties of astronomical latitude and longitude determination in
Chapter 4, we express the above standard deviations in minutes with
decimals,

and

Comparisons with the corresponding values in Section 4.2 (there in the
opposite order) reveal a tremendous increase in accuracy in longitude.
The longitude accuracy has suddenly increased by a factor of 40! More-
over, the number of stations with known longitudes has increased con-
siderably and could be further increased by expanding the triangulation.
Also latitudes could now be found with high accuracy at a large number
of stations in the same way. Triangulation thus meant a revolution in the
determination of coordinates for mapping the Earth.

We may note here that Gadolin himself tried to check his triangula-
tion by making astronomical latitude determinations on seven of the tri-
angulation stations. The discrepancies turn out to have a standard
deviation of 8” (although with a somewhat skew distribution). As the
standard deviation of the triangulated latitudes is only 2” according to
above, the discrepancies mainly reflect the uncertainty in the astrono-
mical latitudes. This uncertainty is in good agreement with that of Sec-
tion 4.2.

It is also interesting to compare the accuracy of this triangulation
with that of the French arc measurement at the Arctic circle. In that case
the total distance along the triangulation network was found to be
slightly more than 100 000 m. The error in this was shown through a
more accurate measurement by Svanberg (1805), treated in Chapter 6, to
be about 50 m. This makes a relative error of 1 : 2000. In the Baltic Sea tri-
angulation via the Åland Islands the total difference in longitude along
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the triangulation is 3 ½ ° or nearly 200 000 m. From Table 5-1 we find
that a scale error in this quantity hardly can exceed 5” – 10” or some 100
m. This makes a relative error hardly exceeding 1 : 2000. Thus the triangu-
lation of Åland seems to have been of the same quality as the one by the
French expedition in the north.

A few years before the Åland triangulation a highly original but
never-implemented method for positioning along coasts was put for-
ward by the Swedish applied mathematician Jonas Meldercreutz (1741).
He suggested using war-ships in very much the same way as satellites
are used for positioning today; for a discussion of this see Chapter 8 (Sec-
tion 8.3).

5.3 Triangulation along the coasts and the first nautical charts

Inspired by the successful triangulation and mapping of France,
other countries decided to do the same. The first countries after France
to decide on national triangulations for mapping were Sweden, includ-
ing Finland, and Denmark, partly with Norway. The reason for the
Nordic countries being so early was most probably the French arc mea-
surement here, with the participation of Celsius, and the subsequent suc-
cessful triangulation of Åland. The Swedish-Finnish triangulation was a
coastal one designed for producing nautical charts. The Danish and Nor-
wegian triangulations also covered the inland and were primarily aimed
at producing land maps.

In Sweden the triangulation was performed following a decision of
the parliament in 1756, right after the triangulation of Åland had been
completed. Both Sweden and Finland have complicated coasts with ex-
tensive archipelagos, and there was an urgent need for charts useful for
navigation. The triangulation covered all Swedish and Finnish coasts
along the Skagerrak, the Kattegat, the Baltic proper, the Gulf of Bothnia,
and the Gulf of Finland. The Finnish part of the triangulation was con-
nected to the Swedish one both around the Gulf of Bothnia and across
the Åland Islands. In addition, a part of the German coast along the Bal-
tic, under Swedish sovereignty, was included. The triangulation was car-
ried out, with interruptions, during a period of 30 years, 1758 – 1786. The
project as a whole was put under the supervision of the Royal Academy
of Sciences, especially its astronomer and statistician Pehr Wargentin at
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the Stockholm observatory, together with the Admiralty, which had sent
for the mathematician Mårten Strömer from the Uppsala observatory.

The triangulation started along the west coast of Sweden, the first re-
sults being presented by the geodesist Nils Schenmark (1765). Uranien-
borg, remarkably enough, was selected as initial astronomical station,
although ruined since almost two centuries. Its latitude was fixed at the
value of Picard (1680), 55°54’15”, and its longitude provisionally at 0°.
The resultant coordinates along the whole west coast were published by
Schenmark (1774 & 1780).

Later on, after extending the triangulation to the east coast of Swe-
den and the coast of Finland, the observatory of Stockholm (Figures 4-4
and 4-5) became the main astronomical station of the triangulation. Its la-
titude was fixed at the value determined by Wargentin (1759) as the ave-
rage of 59 star observations, 59°20’31”. From Table 5-2 we find that the
error in his value is as small as 2”. The longitude of the observatory was
put to 0°. Thus the Stockholm observatory became the zero meridian for
Sweden and Finland; it also had a well-defined relation to the Paris me-
ridian as described in Chapter 4. Azimuths and baselines were measured
in different parts of the network. The special German part of the triangu-
lation had to be measured separately; it relied on the astronomical coor-
dinates of Greifswald.
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Table 5-2. Latitudes (in degrees, minutes and seconds) of the national obser-
vatories as determined in the late 1700s and the early 1800s as a basis for the
national triangulations, and their errors.

Observatory Data source Measured Modern Error

København Bugge (1779) 55° 40’ 57.0” 55° 40’ 53.3” 3.7”
Schumacher (1827) 55 40 52.6 55 40 53.3 - 0.7

Stockholm Wargentin (1759) 59 20 31.3 59 20 33.0 - 1.7
Cronstrand (1811) 59 20 34.8 59 20 33.0 1.8
Selander (1835) 59 20 33.8 59 20 33.0 0.8

Oslo Hansteen (1849) 59 54 43.7 - -
Helsinki Argelander (1837) 60 09 42.6 - -
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Figure 5-3. Nautical chart of the Åland Sea and its surroundings (Norden-
ankar, 1783), the first chart based on triangulation.



The resultant coordinates of the triangulation, except for the already
mentioned ones along the Swedish west coast, were never published.
What we have today is the end product, a set of considerably improved
maps in the form of nautical charts covering the entire Baltic Sea as well as
the Kattegat and the Skagerrak; these are the first ones based on triangulation.
A few of the charts also could benefit from the Danish triangulation
treated below. The charts, all of them in the Mercator projection, include
depths where measured, but these data are in general very sparse. The
first (dated) chart was the earlier mentioned one of the Åland Sea, ex-
tending southwards to Stockholm, issued by Nordenankar (1783); see
Figure 5-3. The whole set of charts, known as Nordenankar’s sea atlas,
was issued during the years 1783 – 1791. It should be mentioned here
that the longitudes on the charts are counted from Ferro (Hierro), one of
the Canary Islands. In reality this means that the longitudes, via Stock-
holm, are determined relative to Paris, but that an arbitrary constant of
close to 20° has been added. This was a common trick at that time in
order to create positive longitudes all over Europe.

The accuracy of the Swedish-Finnish coastal triangulation is diffi-
cult to investigate, as much information and data are lacking. There are
clear signs, however, that the accuracy cannot compete with the high
quality of the Åland triangulation. It appears from Schenmark (1774) that
astronomical positionings have been used as constraints in the triangu-
lation network, indicating a need to strengthen the triangulation data
themselves over long distances (the French instrument was no longer in
use). The uncertainty of an astronomical latitude determination was
about 8” according to Section 5.2; the uncertainty in the triangulation
should thus be considerably larger. This is confirmed by Hällström
(1815), who claims that the Åland triangulation was superior to every
part of the large Swedish-Finnish coastal triangulation. We will return to
this matter in connection with the accuracy of the Danish triangulation
below.

In Denmark the triangulation was performed following a decision of
the Royal Academy of Sciences in 1761, soon after the Swedish triangu-
lation had commenced. Denmark is a country favourable for measure-
ments of this kind. The triangulation therefore covered the whole
country. It was carried out during almost the same period as the Swed-
ish-Finnish one, 1762 – 1792. The project was under the leadership of the
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Royal Academy of Sciences, most of the time through the astronomer
and geodesist Thomas Bugge at the København observatory.

The triangulation started around København. The København ob-
servatory (Rundetårn) served as the main astronomical station; see Fig-
ures 5-4 and 5-5. Its latitude was fixed at the value determined by Bugge
(1779) as the average of 56 star observations, 55°40’57”; see also Bugge
(1784). From Table 5-2 we find that the error in this value is 4”. The longi-
tude of the observatory was put to 0°. Thus the København observatory
became the zero meridian of Denmark; it also had a known relation to
the Paris meridian as described in Chapter 4. An azimuth was deter-
mined in København, and baselines were measured in different parts of
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Figure 5-4. The observatory of København (Horrebow, 1735), fundamental
astronomical station for several triangulations through the works of Bugge

and Schumacher.



the network. The resultant coordinates for the whole island of Sjælland,
where København is situated, were published by Bugge (1779).

Except for Sjælland the resultant coordinates of the triangulation
have not been published. What we have today is the end product, a set
of considerably improved land maps covering the entire Denmark. The
first map was one showing a part of Sjælland with København, issued by
the Norwegian-Danish geodesist and cartographer Caspar Wessel (1768);
this is the earliest map based on the Danish triangulation. The whole set
of maps was issued during the years 1768–1805. It should be noted here
that the triangulation also turned out to be useful as a basis for nautical
charts, namely for the Danish part of Nordenankar’s charts of the Baltic
Sea including the Kattegat.
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Figure 5-5. The old observatory of København today.



Wessel was for many years heavily involved in the triangulation
calculations behind the mapping. These calculations inspired Wessel
(1797) to a fundamental mathematical discovery: the geometric inter-
pretation of complex numbers as quantities in a coordinate system. (The
same discovery was later made also by Gauss, without knowing about
Wessel’s work.)

The accuracy of the Danish triangulation can be judged from an in-
vestigation performed by Bugge (1779) combined with conclusions from
the Åland triangulation. In a similar manner as Gadolin on Åland, he
checked the accuracy of the triangulation by making astronomical lati-
tude determinations on eight of the triangulation stations. The discre-
pancies show a standard deviation of 20” – 30” (600 – 900 m), depending
on what stations are considered acceptable. Since the standard deviation
of the astronomical latitudes should be some 8” according to Section 5.2
(or maybe slightly larger here), the discrepancies in this case should pre-
dominantly reflect the uncertainty in the triangulation. Thus the overall
uncertainty of the coordinates of the Danish triangulation may be esti-
mated at some 500 m. The discussion of the Swedish-Finnish triangula-
tion above roughly indicates an uncertainty there of the same order as
the Danish one (this is supported by the fact that the same kind of in-
strument was used in both triangulations).

In Norway triangulation was performed through a special organi-
zation, the Geographical Survey of Norway, founded in 1773 for that
purpose. The efforts were concentrated on the southern part of the coun-
try, where Oslo is situated. The triangulation of this part was carried out
during the years 1779 – 1813. The project was ultimately supervised from
Denmark, by Thomas Bugge at the København observatory, but later on
the whole leadership was taken over by the Norwegian geodesist Benoni
Aubert.

The triangulation started inland, in the south-east, close to the Nor-
wegian-Swedish border. The main astronomical station selected, and
thereby also the zero meridian, was quite special in the absence of an ob-
servatory: the flag pole at the fortress of Kongsvinger. Azimuths and ba-
selines were measured in different parts of the network, the baselines
mostly on frozen lakes and fiords. The triangulation continued along the
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coasts, in the south-west and the south, until a complete loop around
southern Norway had been closed.

No series of maps or charts resulting from the triangulation was is-
sued at this time, but a single map covering the whole of southern Nor-
way was issued by the Danish cartographer C I Pontoppidan (1785). This
seems to be the first map partially founded on the Norwegian triangu-
lation.

The accuracy of the Norwegian triangulation is difficult to estimate
because of the lack of published numerical results. However, as the tri-
angulation to start with was performed according to detailed instruc-
tions from Bugge, it seems reasonable to assume that its accuracy should
have been comparable to the Danish one. This is partly supported by
some internal comparisons made within the triangulation net at that
time. Astronomical checks of the triangulation net also seem to have been
made, but do not allow any general conclusions.

In summary: The estimated uncertainty of the Nordic triangulations
during the second half of the 1700s is some 500 m, with exception for the
early triangulation of Åland where the uncertainty amounts to only 100
m. Thus the Åland triangulation appears to have an accuracy nearly one
order of magnitude better than the others. This is quite remarkable, but
might be explained by a higher ambition as a pioneering work, together
with a better instrument. Already Hällström (1815) writes:

”In the conviction that this measurement, as regards accuracy, is supe-
rior to all those that hitherto have been made in Sweden and Finland, I
have considered it to deserve a new calculation. … It will always display
the observer’s eminent care and effort to achieve the highest possible
degree of reliability.”

The quality of the Åland triangulation may also be the reason for a pecu-
liar interest in it by the Russian navy nearly 100 years after the triangu-
lation had been performed; see further Chapter 8 (Section 8.2).

As shown in Section 5.2 triangulation meant a revolution in the de-
termination of coordinates for mapping, especially in finding the longi-
tude. The first map-makers using triangulated coordinates, Wessel (1768)
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in Denmark as well as Nordenankar (1783) and Wetterstedt (1789) in
Sweden-Finland, all point out on their maps that these are based on ”tri-
gonometric and astronomical observations”.

Finally we should mention that the Swedish ironworks proprietor
Samuel Gustaf Hermelin, in cooperation with Hällström, issued a unified
map of the Nordic countries, as well as a series of provincial maps of
Sweden and Finland, where the position and shape of the coasts rested
on the triangulations. Most of the inland parts, on the other hand, had to
rely on other kinds of data.

5.4 Shipping clocks across the North and Baltic Seas

When making the charts of the Baltic Sea, triangulation could not
be extended to Gotland and several other distant islands in the Baltic
proper. To compensate for the lack of triangulation, the Swedish-Finnish
geodesist and hydrographer Nathanel Gerhard Schultén (1801), by order
of the King, made astronomical positionings for a number of islands
there. Latitudes were determined in the traditional way, in this case ob-
serving the sun (with a sextant). Longitudes, however, were now deter-
mined by the use of a chronometer, the transportable ship clock invented
by Harrison a few decades earlier. This was the very first longitude chro-
nometer expedition in the Baltic Sea; it was made in 1800 using a hydro-
graphic sailing-ship. The chronometer was set and controlled with the
sun in Stockholm, while the local time at each island was found from the
sun observations there. The voyage was normal except for a heavy storm
south of Åland.

To briefly investigate the results of this expedition we have select-
ed one station on each island visited by Schultén; they are listed in Table
5-3 together with the latitudes and longitudes obtained by him. The ori-
ginal longitudes have, thereby, been shifted from Ferro to Greenwich
(based on his starting longitude at Landsort south of Stockholm).

Beginning with the latitudes we find from their errors, calculated as
measured minus modern latitudes, a standard deviation of 0.6’. This
shows that the uncertainty in astronomical latitude determination under
simple field conditions was one order of magnitude larger than under
observatory conditions (see Table 4-3 in Chapter 4). Turning to the longi-
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tudes we first note a large error, denoted by an asterisk, for the station
on Gotland. According to Schultén (1801) he had to leave the ship on the
other side of the island and travel a long way on land to reach the station,
which heavily disturbed the chronometer. This station, therefore, has
been excluded from the further analysis. We now find, from the errors of
the other stations, a standard deviation in longitude of 2.6’. This shows
that the uncertainty in longitude determination with a chronometer on
board a ship could easily be made smaller than with observing the Ju-
piter moons; see Table 4-2 in Chapter 4. The corrected positions of the
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Table 5-3. Coordinates of the ship expedition to islands in the Baltic Sea in
1800 (in degrees and minutes), and their errors. Stations are ordered basi-
cally from west to east. For explanation of asterisks see text. Data source:
Schultén (1801).

Station Meas. lat. Modern lat. Error

Öland: Böda 57° 15.2’ 57° 14.4’ + 0.8’
Gotland: Visby 57 38.5 57 38.3 + 0.2
Fårö: Avanäs 57 56.8 57 57.6 - 0.8
Gotska Sandön 58 20.6 58 20.8 - 0.2
Östra Bogskär [S of Åland] 59 30.0 59 31.0 - 1.0
Utö [SE of Åland] 59 46.4 59 46.9 - 0.5
Dagö: Dagerort (Hiiumaa: Köpu) 58 54.6 58 55.0 - 0.4
Ösel: Svarverort (Saaremaa: Sörve) 57 54.2 57 54.6 - 0.4

Station Meas. long. Modern long. Error

Öland: Böda 17° 05.2’ 17° 04.7’ + 0.5’
Gotland: Visby 18 24.2* 18 17.2 + 7.0*
Fårö: Avanäs 19 23.9 19 21.0 + 2.9
Gotska Sandön 19 13.1 19 13.2 - 0.1
Östra Bogskär [S of Åland] 20 22.9 20 25.2 - 2.3
Utö [SE of Åland] 21 21.5 21 22.1 - 0.6
Dagö: Dagerort (Hiiumaa: Köpu) 22 10.6 22 12.0 - 1.4
Ösel: Svarverort (Saaremaa: Sörve) 22 08.7 22 03.3 + 5.4



islands in the Baltic Sea according to above were introduced into the suc-
cessor to Nordenankar’s sea atlas, the wide-spread sea atlas of the naval
officer and hydrographer Gustaf af Klint.

It soon turned out that longitude determinations with ship chrono-
meters were very useful in a much wider perspective. It so happens that
London with the Greenwich observatory as well as all Nordic capitals
with their national observatories are situated by the sea. Hence it would
be possible to determine the longitudes of the Nordic observatories relative
to the Greenwich observatory using ship chronometers, in combination with
star observations. To reach a sufficient accuracy, expeditions had to be car-
ried out by repeated voyages with a large number of chronometers. The
introduction of steam-ships further improved the accuracy.

These large longitude expeditions were initiated by the German-
Danish astronomer Heinrich Christian Schumacher, in cooperation with
the Greenwich observatory. Schumacher (1827) writes:

”In the year 1824 the British Admiralty had a steam-ship fitted out and
equipped with 28 chronometers, in order to perform the longitude con-
nection between the Danish and English triangulations.”

More specifically the purpose was to determine the longitude difference
between the observatories of Greenwich and Altona (close to Hamburg).
The steam-ship made 6 voyages (3 forth and back) between Greenwich
and Altona, via the island of Helgoland, with totally 34 chronometers on
board (some chronometers being added by Schumacher). The chrono-
meters brought Greenwich time, determined from the meridian passages
of stars, to the observatory of Altona where it was compared with the
local time, determined from stars there in the same way. The result was
computed by Schumacher (1827) and found to be 9°56’38.6”. This can be
shown to be in error by 7”; see Table 5-4. For the calculations he used a
method specifically designed for this purpose by Carl Friedrich Gauss
(1827), the German mathematician and astronomer, with whom Schu-
macher cooperated in several respects (see also Chapter 6).

At the same time Schumacher started a series of similar voyages to
determine the longitude difference between the observatories of Altona
and København (Rundetårn). These voyages were performed 14 times
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during a period of several years, involving 10 chronometers. Most of the
computations were performed by Schumacher’s colleague, the Danish
clockmaster and astronomer Peter Andreas Hansen (1831). The final re-
sult, however, was published by Schumacher (1831). The error here is
close to 10”; see again Table 5-4.

A few years later, a Russian longitude expedition was carried out
around the coasts of the Baltic Sea, headed by the naval officer T F Schu-
bert (1836). It reached about 40 stations including several astronomical
observatories, among them København, Stockholm and the recently
erected one of Helsinki. At these the observatory astronomers were in-
volved in the work with astronomically determining the local observa-
tory times. The expedition comprised 3 voyages with up to 56 chronometers.
As can be seen from Table 5-4 the errors for København – Stockholm and
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Table 5-4. Successive longitude differences (in degrees, minutes and seconds)
from Greenwich to the national observatories as determined by the great
ship expeditions on the North Sea and the Baltic Sea in the 1820s, 1830s and
1840s, and their errors.

Observatories Data source Measured Modern Error

Greenwich – Altona Schum. (1827) 9° 56’ 38.6” 9° 56’ 31.2” 7.4”
Altona – København Schum. (1831) 2 38 17.2 2 38 07.5 9.7
København – Oslo Hansteen (1849) - 1 51 15.0 - 1 51 16.3 1.3
København – Stockholm Schubert (1836) 5 29 11.8 5 28 50.7 21.1
Stockholm – Helsinki Schubert (1836) 6 53 21.1 6 53 47.4 -26.3

Greenwich – Oslo Summed 10 43 40.8 10 43 22.4 18.4
Greenwich – København from 12 34 55.8 12 34 38.7 17.1
Greenwich – Stockholm results 18 04 07.6 18 03 29.4 38.2
Greenwich – Helsinki above 24 57 28.7 24 57 16.8 11.9

Greenwich – Altona Struve (1846) 9 56 32.1 9 56 31.2 0.9
Altona – Pulkovo Struve (1844) 20 23 07.8 20 23 08.3 - 0.5



Stockholm – Helsinki each exceed 20” but, having opposite signs, almost
cancel each other when added.

On the whole we may estimate the uncertainty of the longitude ex-
peditions treated here at about 15”. This corresponds to 1 second in time.

The next decade witnessed the largest chronometer expedition in
the world. It was carried out across the North and Baltic seas, between
Greenwich and the new Russian central observatory at Pulkovo outside
St. Petersburg. The Baltic part between Pulkovo and Altona, under the
leadership of the German-Russian astronomer Wilhelm von Struve
(1844), a former student of Schumacher, involved no less than 86 chro-
nometers and 16 voyages. The North Sea part between Altona and Green-
wich, under the combined leadership of Struve and his son, the Russian
astronomer Otto von Struve (1846), involved 42 chronometers and 16
voyages. The results are shown in Table 5-4; they are extremely accurate
(partly due to improved methods developed by Struve the elder). The
errors turn out to be only 1”. This longitude connection to Greenwich
would form the basis for further connections to Nordic observatories
performed with new methods later on; see Chapter 6.

The Oslo observatory was being erected at this time. As soon as it
had been completed, a chronometer expedition was arranged between
the observatories of København and Oslo by two Norwegian scientists,
the geophysicist Christopher Hansteen and the astronomer Carl Fearn-
ley (1849). Voyages were performed 14 times, involving 21 chronome-
ters; also this result is given in Table 5-4.

A consequence of all these ship chronometer expeditions was that
longitudes now became better established relative to Greenwich than to
Paris. This was contrary to the case during the era of the Jupiter moons.
Consequently, the nautical charts in the wide-spread Klint’s sea atlas in-
troduced longitudes relative to Greenwich in 1849. In Table 5-4 we have
not only included the longitude differences between the national obser-
vatories and their errors, but also the longitudes of the observatories re-
lative to Greenwich. For the sake of completeness we have also, in Table
5-2, collected the latitudes of the same observatories determined during
this time; we will return to these data in the following chapter.
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Finally it should be noted that several of the errors in Tables 5-2 and
5-4 are so small that the effects of the so-called deflections of the vertical
become important here. For a discussion of this and the modern coordi-
nates in these tables, see Chapters 7 and 8 (especially Section 8.1).
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6. Stars and triangles on continents: Topographic
maps

6.1 The Earth as an ellipsoid of revolution

After Maupertuis’ demonstration of the flattening of the Earth at the
poles, a large number of further arc measurements confirmed the Earth’s
flattening. It became clear that the general shape of the Earth is that of an
ellipsoid of revolution, with a semi-major axis a equal to the radius of the
equator, and a semi-minor axis b equal to the distance along the rotational
axis from the centre to the pole. Thus, at the pole a part of the Earth cor-
responding to a – b is ”missing”, in comparison with a spherical Earth of
radius a. The relation of the missing part to the whole radius is known
as the flattening f of the Earth, f = (a – b)/a. Alternatively the eccentricity e
of the ellipsoid is used, e2 = (a2 – b2)/a2. Approximate modern numerical
values of the above parameters are a = 6 378 km, b = 6 357 km, f = 1/298,
e2 = 0.00669.

A spherical Earth has a constant radius. On an ellipsoidal Earth the
concept of radius is no longer unique. Imagine an arc on the surface of
the ellipsoid, created as the intersection between the ellipsoid and a nor-
mal plane. A sufficiently short part of this arc may be approximated by
a part of a circle. This circle has a certain radius, called the radius of cur-
vature of the arc, but this radius depends on the location of the arc on the
ellipsoid as well as on its direction. The radius of curvature in the direc-
tion of a meridian is known as the meridional radius of curvature, M. It is
smallest at the equator and largest at the pole; it is a function of latitude

according to

The radius of curvature in the direction perpendicular to the meridian is
sometimes known as the perpendicular radius of curvature, N. It is a
function of latitude according to
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These formulae were used by Maupertuis (1738) and derived by him five
years earlier. Approximate numerical values at the equator and the pole
areMe = 6 335 km andMp = 6 400 km along the meridian, and Ne = 6 378
km and Np = 6 400 km perpendicular to that.

The length of a short arc along a meridian can now be written

(6-3)

Correspondingly the length of an arc along a parallel circle can be written

(6-4)

Using the ellipsoidal parameters of Maupertuis and applying the above
formulae, Celsius and his assistant Olof Hiorter (1741) published the first
tables of the length of a degree for various latitudes on the Earth. (Hior-
ter also was married to Celsius’ sister.) It is illustrative here to study the
length of a degree or a minute of arc along a meridian. Inserting the
equatorial and polar values ofM given above into (6-3) yields 1’ = 1 843
m at the equator and 1’ = 1861 m at the pole. Thus a short meridian arc
of a fixed latitude difference is 1 % longer at the pole than at the equa-
tor. The average of the two values, 1 852 m, is the definition of a nautical
mile.

The length of a much longer arc along the meridian requires integra-
tion; an arc from the equator to an arbitrary latitude becomes

(6-5)

This integral leads to intricate problems and series expansions typical
for calculations over long distances on the ellipsoid; we leave them aside
here. The original definition of a metre, introduced in France in 1798, is
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based on (6-5) taken from the equator to the pole, one metre being defin-
ed as 1 / 10 000 000 of that distance.

When computing a triangulation over a part of the Earth it becomes
necessary to take the curved shape of the Earth into account. To begin
with, this has to be done when handling the triangles in the network, i.e.
when calculating the lengths of their sides from the measured angles and
the measured baseline. In this case a local spherical approximation of the
ellipsoid is sufficient; the calculations could be done by applying spher-
ical trigonometry.

After trigonometry has given the sides of the triangles, the diffe-
rences of latitude and longitude between the stations within the network
may be found out. If a length of a side is known, together with its azi-
muth, the components of the side along the meridian and the parallel,

and , can be calculated. Putting these quantities into equations
(6-3) and (6-4) above, and solving for and , one obtains the lati-
tude and longitude differences in the network. Taking the latitude and
longitude at an astronomical station into account, the latitudes and longi-
tudes of all stations in the triangulation network can be determined.

Let us summarize the calculations of positions through triangulation in
four steps.

A. Choose a well-determined ellipsoid (defined by its semi-major axis
and its flattening or eccentricity) on which to perform the calculations.

B. Calculate the sides of the triangles of the network using trigonometry
and a local spherical approximation of the ellipsoid.

C. Calculate the differences in latitude and longitude between the sta-
tions in the network using (6-3) and (6-4), the radii of curvature of the el-
lipsoid being given by (6-1) and (6-2).

D. Calculate the final latitudes and longitudes of the stations in the net-
work by adding the latitude and longitude of a fundamental astronomi-
cal station.
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A main consequence of the above procedure is that the latitudes and
longitudes resulting from a triangulation become dependent on the
choice of the ellipsoid. A different choice of the values of the defining
parameters of the ellipsoid will give different values of the radii of cur-
vature and, in the end, different latitudes and longitudes.

We noted earlier that a short meridian arc of a given latitude diffe-
rence is 1 % longer at the pole than at the equator. Thus a degree is about
1 000 m longer at the pole than at the equator. This can be compared with
the uncertainty of the Åland triangulation in Chapter 5 which was shown
to be about 100 m. Triangulation for mapping, therefore, already from its
break-through required an ellipsoid for its computation.

Let us finally take a closer look at equation (6-3). This simple equa-
tion contains the fundamental possibilities for three different applica-
tions, all of which have been dealt with in this book:

1. Arc measurements for the figure of the Earth: and are measured,
M is solved for. Doing this for two arcs allows the use of (6-1) to solve
also for a and e.

2. Astronomical positionings for mapping: is measured andM is known
from (6-1), is solved for.

3. Triangulation for mapping: is measured and M is known from (6-1),
is solved for.

Items 2 and 3 may also be formulated applying (6-4) and (6-2).

6.2 Triangulation inland and the first topographic maps

At the beginning of the 1800s the Napoleonic Wars changed the
scene for mapping. It became apparent that accurate topographic maps
over whole countries were required for military purposes. This caused a
need for nation-wide triangulations of scientific quality, and lead to the mi-
litary taking over the official mapping. Soon it became apparent that
such maps also were useful for many civilian purposes in society.
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The calculations of the national triangulations required a well-
determined Earth ellipsoid. In the Nordic countries as in several other
countries, therefore, the triangulations in one way or the other were con-
nected with renewed arc measurements for improving the knowledge
of the ellipsoid.

As in the foregoing chapter it started with an arc measurement at the
Arctic circle. The result from Maupertuis’ expedition there had turned
out to deviate too much from later arc measurements performed on other
parts of the Earth. Therefore, a renewed arc measurement at the Arctic
circle was performed by the Swedish mathematician Jöns Svanberg in
1801 – 1803, born in the area. He adopted the methods that had recently
been used in France for the special arc measurement there for defining
a new unit of length, the metre. When presenting the results, Svanberg
(1805) also had adopted the unit of length itself and counted in metres,
two generations before the international break-through for the metre.

The same year as Svanberg’s book was published a military geode-
tic institute, mostly known as the Royal Topographic Corps, was created
in Sweden, with the aim of performing triangulations and constructing
topographic maps over the whole country. Svanberg was appointed its
first scientific leader. Triangulating Sweden is not easy because of its vast
uninhabited forests; they are difficult to walk through with scientific
equipment and they prevent sights between stations. As a result, the tri-
angulation of Sweden lasted for nearly a century; it was carried out in
1815 – 1890. Some parts of the country could not be covered by triangles
and the mapping there had to rely on less accurate positioning.

The fundamental astronomical station of the Swedish triangulation
was, as earlier, the Stockholm observatory. Its latitude was redetermined
by Svanberg’s successor, the astronomer and geodesist Simon Cron-
strand (1811), using a relatively small number of star observations. His
value differed very little from the old one of Wargentin (1759) as recal-
culated by Cronstrand with a new star catalogue, and the value adopted
for the triangulation was the average of the two, 59°20’34.8”; see Table
5-2 (Chapter 5). As can be seen there, the error in both Wargentin’s (1759)
value and Cronstrand’s (1811) value is 2”, although of opposite signs.
The longitude of the observatory was as usual put to 0°, keeping the zero
meridian at Stockholm. Its connection to the Greenwich meridian is treated
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in Section 5-4; see also the end of this section. The ellipsoid adopted for
the triangulation was an improved version of the one that Svanberg
(1805) had computed from his own arc measurement combined with
three others.

A few decades later Cronstrand’s successor, the Swedish geodesist
Haqvin Selander (1835), made a complete redetermination of the lati-
tude of the Stockholm observatory, using 108 star observations. From
Table 5-2 we find that his error is only 1”. Nevertheless, the earlier value
continued to be used for the triangulation.

When the southern half of the triangulation had been completed
after half a century, including the time-consuming calculations, the re-
sultant coordinates were made public by Selander (1866), after much he-
sitation. The reasons given for the hesitation throw light on a classical
and permanent problem with official coordinates:

”The following results of determinations of positions in Sweden by the
Topographic Corps have already since a long time been calculated and
been meant for printing. The printing has, however, been postponed year
after year to await the finishing of certain control measurements, like a
baseline measurement, astronomical determinations of latitudes and azi-
muths, connections to the Norwegian, Danish and Russian triangulation
networks etc. These reasons called for a complete recalculation which …
cannot be avoided if the work shall provide a solid foundation for all
time for maps of Sweden. The control measurements were performed.
The recalculation started and had progressed quite far. Then the Mid-
European arc measurement cropped up which will have a considerable
impact on all positions …”

The coordinates were published with the warning that they could be ex-
pected to undergo changes in the future.

The accuracy of the coordinates can be judged from certain investi-
gations made by Selander’s successor, the Swedish geodesist Per Rosén
(1879). We will revert to this problem towards the end of this section.

While the Swedes in the beginning had turned to the French for sci-
entific inspiration, the Danes turned to the Germans. In 1816 a national
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geodetic institute, the Danish Arc Measurement, was founded, with the
German-Danish astronomer Heinrich Christian Schumacher as its first
scientific leader. He had been a student of Gauss. Schumacher now ar-
ranged a cooperation with Gauss: While Schumacher was making a com-
bined arc measurement and triangulation of Denmark, Gauss would
extend this work into the adjoining state of Hannover, south of Denmark.

The first results of the Hannoverian triangulation were published
by Gauss (1828); he personally made all the numerical calculations. Here
and in other related works Gauss applied several of his recent mathe-
matical ideas. He applied the method of least squares to deal with over-
determinations, he tested the theory of curved surfaces on ellipsoidal
triangles, and he introduced a new map projection of his, later on used
all over the world.

The triangulation of Denmark was carried out, with interruptions,
in 1816–1870, partly benefiting from the work of Gauss. The fundamen-
tal astronomical station of the triangulation was, as earlier, the Køben-
havn observatory (Rundetårn). Its latitude was redetermined by
Schumacher (1827a) using no less than 279 star observations. His value
adopted for the triangulation was 55°40’52.6”, differing slightly from the
old one of Bugge (1779); see Table 5-2. From there we find that, while
the error in Bugge’s (1779) value is 4”, the error in Schumacher’s (1827a)
value is only 1”. The longitude of the observatory was as usual put to
0°, keeping the zero meridian at København. Its connection to the Green-
wich meridian is treated in Section 5.4. The ellipsoid adopted for the tri-
angulation was a modification of the one by Walbeck (1819), treated
below; the Walbeck ellipsoid had been used by Gauss.

We should note here that with the latitude determinations of Schu-
macher (1827a) and Selander (1835), as well as with the longitude deter-
minations of Struve (1844, 1846) in Section 5.4, the error in fundamental
astronomical positioning had now reached below 1”. This error is so
small that the effect of the so-called deflection of the vertical becomes
important here; for a discussion of this and the modern latitude and longi-
tude values in Tables 5-2 and 5-4, see Chapters 7 and 8 (especially Section
8.1).
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The results of the Danish triangulation were presented in three
comprehensive volumes by Schumacher’s successor, the Danish military
geodesist (and minister of finance) Carl Georg Andræ (1867, 1872, 1878),
followed by a fourth volume by Andræ and the German astronomer
Christian Albert Friedrich Peters (1884). In the last volume, when look-
ing back on the now completed work, Andræ & Peters (1884) make a re-
flection probably common to all who have experience from this kind of
scientific project lasting for several generations:

”Measurements that, with various interruptions, have covered a time
span of almost 70 years, in many respects cannot fulfil the scientific de-
mands that nowadays might be considered fully justified. … In addition
to this, the original plan, irrespective of how satisfactory it might have
appeared at that time, nowadays will require a lot of modifications and
additions.”

Thus, at the completion of the work, one could already foresee the need
for further improvements.

For Norway the political landscape had changed at the end of the
Napoleonic wars. Norway had been separated from Denmark and turn-
ed into a country of its own, in a loose union with Sweden. This meant
that the Geographical Survey of Norway now was allowed to handle the
fundamental positioning for mapping on its own.

Triangulating Norway is quite a special task because of its exten-
sive uninhabited mountain areas; the mountains are not always easy to
climb with scientific instruments. It took some time before the triangu-
lation could start; it was carried out in 1826 – 1875. In northernmost Nor-
way use could be made of Struve’s arc measurement; see below. It
extended all the way up to the Arctic Sea, its end point being at Ham-
merfest (Figure 6-1).

The fundamental astronomical station of the Norwegian triangula-
tion was, to start with, still the flagpole at the Kongsvinger fortress. How-
ever, it was soon replaced by the observatory of Oslo (at that time named
Christiania), founded by the Norwegian geophysicist Christopher Han-
steen, scientific leader of the triangulation. The latitude of the Oslo ob-
servatory was determined by Hansteen and the Norwegian astronomer
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Carl Fearnley (1849). Their result adopted for the triangulation was
59°54’43.7”; see Table 5-2. The longitude was put to 0°, thereby making
the Oslo observatory the new zero meridian of Norway. Its connection
to Greenwich is treated in Section 5-4. The ellipsoid chosen for the tri-
angulation was the one by Bessel (1841); see next section.

The resultant coordinates of the triangulation were not published
in full. A summarizing investigation was made by the Norwegian astro-
nomer Hans Geelmuyden (1895); we will return to that in Chapter 7.

Also for Finland the political landscape had changed during the Na-
poleonic wars. Finland, together with Åland, had been separated from
Sweden and turned into an autonomous part of the Russian empire. This
meant that the fundamental positioning for the mapping of Finland came
into the hands of Russia.
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Figure 6-1. Fuglenes near Hammerfest at the Arctic Ocean, northern end
point in 1852 of the Russian-Scandinavian arc measurement, led by Struve

(photo B G Harsson).



The Russian authorities did not perform a national triangulation of
Finland. Instead the scientists at the newly founded observatory of Pul-
kovo outside St. Petersburg contributed with a triangulation chain
through Finland. This was a part of a very long arc measurement, start-
ing in present Ukraine, crossing the whole of Finland, touching north-
eastern Sweden and extending into northernmost Norway. The work
was performed by Struve the elder (introduced in Chapter 5), partly to-
gether with Tenner, Hansteen and Selander (1857 & 1860). Their arc was
used as a basic triangulation in Finland and also in the aforementioned
parts of Sweden and Norway. Later connected to this triangulation was
the observatory of Helsinki, founded and astronomically positioned by
the German-Finnish astronomer Friedrich Argelander (1837); see Table
5-2.

An ellipsoid used in Finland and Russia was computed by the Finn-
ish astronomer Henric Johan Walbeck (1819), applying for the first time
in this context the method of least squares. Walbeck applied this new
method to find the most likely ellipsoid parameters from six arc measure-
ments on different parts of the Earth, one of them being the renewed
Swedish one by Svanberg. Walbeck’s ellipsoid was later used by Gauss
for his triangulation calculations and his map projection.

The triangulations in the end resulted in more or less complete se-
ries of topographic maps covering the respective country. Also other map
series, like land use maps and nautical charts, were produced with the tri-
angulations as their basis. In principle the basic triangulation was densi-
fied by local triangulations, which in their turn were densified by even
more local measurements of directions and distances. In this way all ob-
jects could be placed on the map with reasonably correct coordinates
and, hence, the whole map or chart constructed. An example of a to-
pographic map based on these triangulations is shown in Figure 6-2.

Nautical charts had long since been made in the Mercator projection,
a conformal cylindric projection suitable for navigation. For the topo-
graphic maps some other conformal projection was needed. A conformal
projection preserves angles and, thereby, the shapes of small objects like
islands, lakes etc. in the map, whereas the sizes of the objects inevitably
become erroneous. A new such map projection with less erroneous sizes
had been developed by the German mathematician Johann Heinrich
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Lambert (1772), a conformal conic projection. Lambert’s projection was
now introduced for most topographic maps, in Sweden in a special version
constructed by the military geodesist Carl Gustaf Spens (1817), mini-
mizing the projection errors.

The different kinds of measurements performed in a triangulation
network provide a possibility of investigating the accuracy of the net-
work. This can then be used for roughly estimating the accuracy of the
resultant coordinates. The baseline length in a triangulation network is
considerably more accurate than the angles in the network. Hence an es-
timate of the accuracy of the network can be obtained by measuring se-
veral baselines in different parts of the network, and then calculating the
length of a baseline starting from another baseline, using all the angles
in between. Comparing the calculated length of the baseline with the
measured length gives an indication of the accuracy of the network.

Figure 6-2. Topographic map (with a part of the river Klarälven) of the kind
issued in the second half of the 1800s, based on triangulation.



Doing so both for the Swedish network and for adjacent parts of the Dan-
ish and the Norwegian networks, Rosén (1879) found an uncertainty of
the order of 1 : 20 000.

In Chapter 5 we estimated the corresponding quantity for the pio-
neering Åland triangulation at 1 : 2 000. Hence the triangulation of the
1800s should be one order of magnitude better than the best one of the
1700s. As the uncertainty of the coordinates of the Åland triangulation
was found to be about 100 m, we may conclude that the uncertainty of
the present triangulations should be of the order of 10 m.

We have seen that each country had selected a national zero meri-
dian for its triangulation. For international cooperation and for nautical
charts, however, it was necessary to know the relation between the na-
tional zero meridian and the international one through Greenwich. This
had been achieved through the great chronometer expeditions between
the Greenwich observatory and the Nordic observatories during the first
half of the 1800s, as described in Chapter 5. Now, in the second half of
the 1800s a new method of transferring time from one place to another
was introduced. Time information could be sent immediately via telegraph
(later on via radio). This gave rise to a series of more accurate longitude de-
terminations between the observatories.

A telegraphic longitude determination between København and Al-
tona was performed by Peters (1884). The connection between Altona
and Greenwich still rested on the improved chronometer expedition by
Struve & Struve (1846). In a Swedish-Norwegian-Danish cooperation the
astronomers Georg Lindhagen, Carl Fearnley and Frederik Christian
Schjellerup (1890) performed telegraphic longitude determinations
between København, Oslo and Stockholm. (Lindhagen also was married
to a daughter of Struve the elder, or a sister of Struve the younger.)

Although measured last, the telegraphic longitude determination
between Stockholm and Helsinki and further to Pulkovo was published
first, by the Russian and Swedish-Russian astronomers V Fuss and Mag-
nus Nyrén (1871). From there the longitude relative to Greenwich had
been fixed by the world´s largest chronometer expedition, that between
Pulkovo and Altona by Struve (1844) combined with the one between
Altona and Greenwich by Struve & Struve (1846) mentioned above; see
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Section 5.4. This had the consequence that the Swedish connection to
Greenwich became defined via Pulkovo.

The longitude results for the national observatories are collected in
Table 6-1. The modern longitudes there are taken from Chapter 8 (Sec-
tion 8.1).

6.3 Continental triangulations and maps

As we have seen above, triangulations and official mapping were
long-lasting national projects where each country strived to use the best
Earth ellipsoid available at the time of starting the computations. This
lead to different countries choosing different ellipsoids, causing the final
coordinates to be inconsistent across the national borders. We have also
seen that different countries established different astronomical stations
as their respective starting points, known as datum points, for calculat-
ing coordinates. Each country thus had its own reference system, in which
the coordinates were given, based on a specific ellipsoid and a specific
datum point.

To overcome this, international cooperation became necessary. In
1861 an international organization for this purpose was founded, soon to
be known as the International Earth Measurement and later as the In-
ternational Association of Geodesy. Its central person was the German
geodesist and geophysicist Friedrich Robert Helmert. Helmert (1886)
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Table 6-1. Longitudes relative to Greenwich (in degrees, minutes and sec-
onds) of the national observatories as determined in the late 1800s, and their
errors.

Observatory Data source Measured Modern Error

Oslo Lindhagen (1890) 10° 43’ 23.3” 10° 43’ 22.4” 0.9”
København Peters (1884) 12 34 39.6 12 34 38.7 0.9
Stockholm Fuss (1871) 18 03 29.8 18 03 29.4 0.4
Helsinki Fuss (1871) 24 57 17.2 24 57 16.8 0.4



started to connect national triangulations with each other, recalculating
them on a common ellipsoid, starting from a common datum point. The
common datum point was Berlin. The common ellipsoid was the one by
the German mathematician and astronomer Friedrich Wilhelm Bessel
(1837 & 1841). Thereby the Bessel ellipsoid achieved the status of an
unofficial international standard. This ellipsoid was based on ten arc
measurements from different parts of the world, including the renewed
Swedish one by Svanberg, the Danish-Hannoverian one by Schumacher
and Gauss, and the southern part of the Russian-Scandinavian one by
Struve.

During the first half of the 1900s the Nordic countries performed re-
newed and more dense national triangulations as a foundation for more
accurate topographic and other maps. In this connection a greatly im-
proved method of measuring the lengths of baselines, using thin wires
instead of rods, had been introduced by the Swedish geodesist Edvard
Jäderin (1915), in an Arctic arc measurement on Spitsbergen (Svalbard);
it soon became a standard procedure in triangulation.

For the computations of their triangulations, Norway and Sweden
now adopted the international Bessel ellipsoid, Norway, however, a mo-
dified version of it (due to a differing conversion to the metre as a unit
of length). Sweden also abandoned its national datum point (at least as
far as latitudes are concerned) and started its calculations from the Dan-
ish datum point in København. Denmark and Finland, however, starting
slightly later, adopted the new ellipsoid of the American geodesist John
Hayford (1909 & 1910), at that time replacing that of Bessel as an inter-
national ellipsoid. Finland, now making their first national triangulation,
introduced the observatory of Helsinki as their datum point. Thus also
the renewed triangulations were calculated in separate national reference
systems, although the Swedish one via København had certain connec-
tions to the old Central European system initiated by Helmert. This Swed-
ish system, in a slightly modernized version, is still partly in use
although it has really old roots: It ultimately rests on Schumacher’s lati-
tude determination of København in 1820 – 1821, Struve’s longitude ex-
pedition to Greenwich in 1843 – 1844 and on Bessel´s ellipsoid based on
measurements dating back to 1735!
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After the First World War the countries around the Baltic Sea in 1924
formed the so-called Baltic Geodetic Commission, with the main task of
connecting the triangulations around the Baltic proper and recalculating
them in a common reference system. This work was completed by the
Finnish geodesist Victor Ölander (1949), using the Hayford ellipsoid and
a new way of defining the datum point (see Chapter 7).

After the Second World War nearly all national triangulations in Eu-
rope were brought together, on an American initiative, by the Interna-
tional Association of Geodesy (IAG) and recalculated with the newly
invented first generation of computers. In this way the American geo-
desist Charles Whitten (1952) managed to present a common reference
system for a large part of Europe, known as the European Datum (ED).
This was based on the Hayford ellipsoid with the datum point at Pots-
dam close to Berlin. The ED coordinates soon became widely used in Eu-
ropean cooperation. Moreover, they were adopted as national
coordinates in both Denmark and Norway and used there for their to-
pographic maps.

The Nordic triangulations during the first half of the 1900s in the
end resulted in new complete series of topographic and land use maps
as well as nautical charts, this time with the additional aid of aerial pho-
tography. An example of a topographic map based on these renewed
triangulations is shown in Figure 6-3.

When the above triangulations were about to begin, the German
geodesist Louis Krüger (1912) had presented explicit and accurate for-
mulae for the favourable map projection invented by Gauss nearly one
century earlier. Gauss’ projection is a conformal cylindric projection, a re-
lative of the Mercator projection, but with the cylinder being tangent to
the Earth along a meridian instead of along the equator. This makes the
cylinder of Gauss an elliptic one instead of a circular one, leading to
mathematics resulting in long series expansions. With Krüger’s expli-
cit formulae available, most countries, including the Nordic ones, now
introduced the Gauss projection (transverse Mercator projection) for the
topographic and other accurate land maps. In connection with issuing the
new maps Greenwich was introduced as zero meridian also on the land
maps, not only on the marine charts as before.
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The internal uncertainty of the resultant coordinates of the renewed
triangulations during the first half of the 1900s can be estimated at about
2 m, based on comparisons with a later and especially accurate triangu-
lation (Section 7.2). This is five times better than the corresponding un-
certainty of the coordinates stemming from the triangulations during the
1800s as found in Section 6.2; see Table 6-2.
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Figure 6-3. Topographic map (with a part of the river Klarälven) of the kind
issued in the second half of the 1900s, based on renewed triangulation

(combined with aerial photography).



Calculating a large triangulation network was a tremendous work;
it could not be performed in one piece, but had to be split up into seve-
ral blocs which afterwards were in some way tied together. When the
first Nordic computers had been constructed in the early 1950s they were
right from the beginning used for geodetic applications. The Danish geo-
desists Torben Krarup and Bjarner Svejgaard (1956) started developing
mathematical methods suitable for solving large geodetic problems with
computers. They even constructed a computer themselves, very much
used for this kind of work.

After having completed his calculations of the European triangula-
tions Whitten (1952) writes:

”With the experience which has been gained in the completion of these
two projects [the northern and south-western blocs] and the rapid de-
velopment which has taken place in high-speed computing equipment
during the past few years it is now practical to at least think of adjusting
all the triangulation of a continent into one homogenous network. I be-
lieve that future generations will go beyond the limitation of continents
and devise methods for the adjustment of a world network of triangula-
tion.”

However, in order to go ”beyond the limitation of continents” one would
have to face a remarkable problem. This problem did not have to do with
the surface of the Earth, nor with the stars in the sky, but, surprisingly
enough, with the unknown interior of the Earth.
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Table 6-2. Estimated internal uncertainties (in m) of the coordinates of the na-
tional mapping triangulations during three centuries.

Century Uncertainty

1700s > 100 (100 – 500)
1800s 10
1900s, first half 2
1900s, second half 0.1



7. Stars and satellites: Mapping in a global system

7.1 Star observations and hidden masses inside the Earth

While the first national triangulations were going on and were being
analyzed in several countries on the European continent, a suspicion
began to grow. Maybe the vertical, i.e. the plumb line, did not every-
where coincide with the normal to the Earth ellipsoid? Not only visible
mountains but also possible irregularities in the mass distribution inside
the Earth would cause such an effect. It was already known that density
within the Earth’s crust was not the same all over, and it was also known
that density increased towards the centre of the Earth. Based on this
Gauss (1828) introduced a new fundamental surface of the Earth: the
equipotential surface of the Earth’s gravity field coinciding with mean
sea level, i.e. a surface everywhere perpendicular to the plumb line.
This surface was later termed the geoid. The geoid would deviate in an
unknown way from the ellipsoid because of the irregular mass distribu-
tion within the Earth.

The British mathematician and physicist George Gabriel Stokes
(1849) derived a formula showing how this deviation was dependent on
anomalies in the gravity field of the Earth. However, the formula re-
quired not only that gravity could be measured with sufficient accuracy,
but also that it was measured all over the globe. To compute the devia-
tion of the geoid from the ellipsoid at a certain point it was necessary to
integrate the gravity anomalies over the Earth as a whole. Because of this
the formula of Stokes could not be applied in practice (until our own
days).

However, the problem needed to be investigated in some way since
it would affect the astronomical determination of latitudes and longi-
tudes. When putting up an astronomical instrument for positioning it is
adjusted with a spirit level. The spirit level ”feels” the direction of the
plumb line, or the vertical. If the direction of the vertical deviates from
the normal to the ellipsoid, this deviation will directly affect the mea-
sured latitude and longitude. Since the error caused by this phenomenon
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is due to hidden masses inside the Earth (see Figure 7-1) we have a very
tricky situation: The origin of the problem is invisible!

Now, the question could be partly investigated by making astrono-
mical determinations of latitude and longitude at several stations in dif-
ferent parts of a triangulation network, and then comparing the
astronomical coordinates with the triangulated ones. The astronomical
measurements are directly dependent on the direction of the vertical.
The measurements of the lengths and horizontal angles in the triangu-
lation network are not. Hence the astronomical coordinates will differ
from the triangulated ones, if there are local or regional deflections of
the vertical from the normal to the ellipsoid. Denoting the astronomical lati-
tude and longitude by and , and the triangulated (geodetic) latitude and
longitude by and , we may write

(7-1)
(7-2)

Here and are the deflections of the vertical in the south-north and west-
east directions, respectively.

The search for deflections of the vertical was initiated in Germany
by Helmert. He not only strived to connect national triangulation net-
works to each other but also to perform accurate astronomical position-
ing on selected stations within the networks, thereby allowing
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Figure 7-1. Deflection of the vertical due to irregular mass distribution in-
side the Earth.
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discoveries of deflections of the vertical. Helmert (1880) writes:

”The calculation of the deflections of the vertical for assumed dimen-
sions of the reference ellipsoid presupposes that for one point the deflec-
tion of the vertical either is put to zero or is included as an unknown
quantity in the calculation. Hereby we naturally suppose that all triangu-
lation networks are connected with each other.”

After several years’ work Helmert (1886) could publish the first values
of deflections of the vertical for a number of German states, mainly along
the Baltic Sea. Arbitrarily putting the deflections at Berlin to zero (on the
Bessel ellipsoid) he found that the deflections at other stations amounted
to ≈ ≈ 10”. This is one or two orders of magnitude larger than the
uncertainty of the astronomical positioning of an observatory at that time
(Sections 6.2 and 7.4). Two decades later Helmert’s co-worker A Börsch
(1906) had extended the area of determined deflections to include also
Denmark.

In Scandinavia Rosén (1889) made the first determinations of deflec-
tions of the vertical by making astronomical latitude determinations on
triangulation stations in Sweden and northern Norway. Putting the de-
flection at Stockholm to zero, he obtained deflections at the other sta-
tions of more or less the same magnitude as Helmert. Geelmuyden (1895)
added deflections in southern Norway.

In Finland, one generation later, the gravimetric method was tried.
Using a rather limited number of gravity anomalies determined there,
Ölander (1931) estimated the deflections of the vertical. These are noth-
ing but the inclinations of the geoid, which thus can be found by diffe-
rentiating Stokes’ formula. Because of the lack of a more global coverage
of gravity data neither this attempt could result in any absolute values
of the deflections.

When calculating the European triangulations in the common ED
system, it became possible to calculate also deflections of the vertical in
this system, based on the Hayford ellipsoid. This work was initiated by
the German geodesist Helmut Wolf (1949), starting from Potsdam close
to Berlin. But still all deflections rested on some more or less arbitrary as-
sumption of the values of the deflections at this starting point (sometimes
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these values were chosen to minimize the deflections within a certain
area).

Let us look back a little to put the problem of deflections of the ver-
tical into perspective. In the early days, when astronomical positioning
was performed with accuracies of the orders of a degree or a minute
(Chapters 2 and 3, partly also 4), all positions could be regarded as being
given in one and the same system, a global system. Later on, the accuracy
of the astronomically determined positions increased to the order of a
second (Chapter 6, partly also 5). It then turned out that these coordi-
nates were disturbed by deflections of the vertical being considerably
larger than the uncertainty of the positioning. This meant that the coor-
dinates of a triangulation founded on a certain astronomical station
could be regarded as belonging to one system, but that the coordinates
of another triangulation founded on another astronomical station must
be regarded as belonging to another system. The relation between the
two systems remained unknown as long as the deflections of the verti-
cal at the two astronomical stations were not known, or the two triangu-
lation networks were not connected.

As we have seen, however, deflections of the vertical could not be
determined in an absolute sense, only relative to a neighbour station,
and triangulation networks could not be connected over longer distan-
ces than those allowing sights between them. This made it impossible to
connect different continents with each other. Triangulation between con-
tinents obviously was prevented by the observer not being able to see
across the ocean. Neither could such a global method as astronomical
positioning be used for bridging the gap between continents, since the
astronomically determined positions did not come out in a consistent
system because of the deflections of the vertical. And these deflections
are caused by invisible masses! As the deflections of the vertical could be
expected to reach 10” – 20” or one quarter of a minute of arc, the resul-
tant errors in the latitudes and longitudes would correspond to up to
500 m on the surface of the Earth.

To summarize the problem:

1. Triangulation between continents is prevented by lack of sight across
the ocean.
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2. Astronomical positionings on different continents are not comparable
to each other because of perturbations by hidden masses inside the Earth.

7.2 How to connect continents?

In 1945 a total solar eclipse occurred, visible both in the Nordic
countries and in Canada. The Finnish geodesist Ilmari Bonsdorff (1944)
proposed to use this and similar events for connecting Europe and Ame-
rica across the Atlantic. The idea was the following.

The solar eclipse does not occur at the same instant all along the
path on the Earth’s surface from where it is visible. The times of the be-
ginning and the end of the eclipse are dependent on the motion of the
moon and, thereby, on the location on the Earth from where the eclipse
is observed. Consequently, if the times of the totality of the eclipse are ac-
curately measured at two different locations on the Earth, one on each
side of the Atlantic, the distance between the locations might be deduced.
The observations showed that it was not easy to measure these times ac-
curately enough; moreover, total solar eclipses are both rare and geo-
graphically limited events.

The same year marked the end of the Second world war. Just a few
months after the war had ended a cooperation took place between the
British Royal Air Force, American military surveyors, and Danish and
Norwegian geodesists, for connecting the triangulations of Denmark and
Norway across the sea of Skagerrak. This was a kind of three-dimensio-
nal triangulation using parachute flares dropped from aeroplanes. These
flares were observed simultaneously from three triangulation stations in
Denmark and three in Norway. The experiment was quite successful,
although hastily prepared, according to the results calculated by the Dan-
ish geodesist Ove Simonsen (1949). However, it was a matter of bridging
a limited sea area, not an ocean.

A more far-reaching idea was presented by the Finnish physicist
and astronomer Yrjö Väisälä (1946). His idea was the following.

Imagine a rocket sent up high enough above the Earth’s surface.
During night-time this rocket can be observed (photographed) against a
background of stars on the celestial sphere. The observed position of the
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rocket against this background will be different as seen from different
observation points on the Earth. Consequently, if the positions of the
rocket on the celestial sphere, expressed as declination and right ascen-
sion, are determined simultaneously from several observation points on
two continents separated by an ocean, the relative positions of the points
on the Earth could be determined. These positions on the Earth would
then be in a common system and, if extended to span the whole Earth,
independent of any deflections of the vertical.

Remarkably enough, Väisälä (1946) considers a further development
of this idea:

”If rocket missiles can be developed to such a degree that it would be
possible to realize small moons which would circle the earth at an alti-
tude of some thousands of kilometers with a period of only several
hours, we should obtain practically eternal light sources for a giant tri-
angulation and these light sources could also be used for physical mea-
surements of the earth. A simple calculation reveals that an artificial
moon several decimeters in diameter could be followed with medium-
sized apparatus.”

What Väisälä proposes here is a kind of satellite triangulation. Later he
and his colleague Liisi Oterma (1960) developed the method for practi-
cal use, but when Väisälä made his proposal man-made satellites, ”arti-
ficial moons”, did not yet exist in reality!

At about the same time as the above works were going on, the Swed-
ish geodesist Erik Bergstrand (1948) invented a new method of measur-
ing distances, using the emission of electro-magnetic waves in the form
of light. The principle is simple. The velocity of light is a known con-
stant. Hence, from the time it takes to send a light signal from one station
to another it is possible to find the distance between the two stations.
Bergstrand developed this method so that it could be used in practise
with an accuracy of, at its best, 1 : 1 000 000. He also turned it the other
way around: An internationally widely used value of the velocity of
light was determined by Bergstrand (1950). Positioning problems thus
inspired him to find the velocity of light just as it had inspired Rømer 300
years ago (Section 4.1).
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Bergstrand’s invention led to Sweden performing a third triangula-
tion, now measuring distances between all the stations instead of angles.
In this respect the triangulation mentioned is probably a unique one. The
internal uncertainty of the resultant coordinates is about 0.1 m (Reit,
1995), one order of magnitude smaller than that of the last traditional tri-
angulation; see Section 6.3 (Table 6-2).

Now, the optimal way of trying to connect continents would be to
combine the works of Väisälä (1946) and Bergstrand (1948):

1. To connect continents and get rid of the unknown deflections of the
vertical, use artificial satellites, as suggested by Väisälä.

2. To make the connections accurate enough, measure distances to the sa-
tellites using waves travelling with the velocity of light, in accordance
with the principle of Bergstrand.

A combination of this kind actually forms part of the basis of today’s sa-
tellite positioning, developed in America. However, before discussing
satellites we need to make a visit to the most distant parts of the uni-
verse.

7.3 Distant galaxies and close satellites

In 1964 a high quality radio telescope was built at the Onsala space
observatory south of Göteborg (see Figure 7-2), founded fifteen years
earlier by the Swedish physicist Olof Rydbeck. Here radio waves from
some recently discovered radio sources in the universe, known as qua-
sars, could be received and analysed. It had just been found out that the
quasars were a kind of extremely distant galaxies (star systems); in fact, they
were the most distant objects observed in the whole universe. Their dis-
tance exceeded 10 billion light years, implying that they were observed
in a state representing the childhood of the universe.

In comparison with the size of the Earth, which is of the order of
1/10 of a light second, the distance to the quasars may be considered as
infinitely large. Because of that, radio signals from quasars received at
two widely separated observatories on the Earth can be considered as
parallel to each other. This opens up the possibility to compare the pha-
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ses of the radio wave at the two observatories, using interferometric
methods. From the phase difference, and since the radio wave is known
to travel with the velocity of light, the accurate difference in distance to
the object from the two observatories can be determined. Performing this
kind of distance measurement during a rotation of the Earth allows a de-
termination of the distance between the observatories themselves, even
if they are situated on different continents. This method, invented in
America, is known as very long baseline interferometry (VLBI). The first
useful intercontinental results from VLBI observations were reported
between the Onsala observatory on the European continent and a small
group of observatories on the North American continent, by the Ameri-
can geodesist Thomas Herring and a number of co-workers (1986). They
succeeded in determining the distance between the two observatories
with an accuracy of the order of centimetres; see also the work by the
Swedish space scientists Gunnar Elgered, Bernt Rönnäng and co-workers
(1994).
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Figure 7-2. Onsala space observatory, receiving radio waves from distant
star systems, a fundamental station for VLBI and satellite positioning

(photo B Hansson).



Now, imagine a number of observatories on different continents on
the Earth. The positions of the observatories are known from classical
astronomical positioning and triangulation. As explained above, these
coordinates are perturbed by more or less unknown deflections of the
vertical due to anomalous masses inside the Earth. Hence the positions
of the observatories, both absolutely and relative to one another, are un-
known within several hundred metres. Analysing radio waves from the
universe through VLBI, the distances between these observatories and,
thereby, their relative positions suddenly can be determined within cen-
timetres! In this way a global set of stations accurately positioned rela-
tive to one another may be created. However, the absolute position on
the Earth of the set of stations as a whole remains to be fixed. This can,
in principle, be accomplished by ”locating” the set as a whole in such a
way that the deflections of the vertical are globally minimized.

In 1988 the first such global set of stations was established in inter-
national cooperation. It consisted of 34 stations, one of them being the
Onsala space observatory. Their coordinates were published by the
French astronomers and geodesists Claude Boucher and Zuheir Alta-
mimi (1989), defining the initial International Terrestrial Reference Frame
(ITRF). This marked the beginning of a new era of global positioning, in
which satellites would become a powerful tool.

Man-made satellites had been circling the Earth since the late 1950s.
If the motion of a satellite in its orbit is tracked from observatories on
the Earth with known global ITRF coordinates, the corresponding coor-
dinates of the satellite can be computed for any instant. If such satellites
with known coordinates are observed from an arbitrary station on the
Earth, the global ITRF coordinates of the arbitrary station can be com-
puted. This is the basic principle of satellite positioning.

To allow a sufficiently accurate positioning, a satellite system had to
be developed where each satellite emits a radio signal to be received on
the Earth by a special receiver. Measuring the time it takes for the radio
signal to travel from the satellite to the station, the distance between the
satellite and the station can be calculated. Determining the distances in
this way from a station on the Earth to at least three satellites will allow
computing the position of the station on the Earth. (In practise four satel-
lites are required, the additional satellite being needed for synchronizing
clocks in the satellites and on the Earth.) See also Section 8.3 with Figure
8-1!
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A satellite system of the above type was developed in the 1980s by
the American Defence Mapping Agency. It has become known as the
Global Positioning System (GPS). Primarily it was designed for use in
navigation, but is now also used in accurate mapping and for scientific
investigations of the Earth. In navigation the coordinates obtained from
GPS are mostly known to be in the World Geodetic System (WGS), which
is a close relative of the ITRF; see Figure 7-3.

Let us summarize the process of satellite positioning in the following
five steps:

1. Determine, from optical observations of stars on the celestial sphere
(combined with triangulation), the latitudes and longitudes of a number
of observatories on the Earth.

2. Determine, from radio observations of distant star systems in the Uni-
verse, the distances between the observatories of item 1.

3. Combining items 1 and 2, adjust the coordinates of the observatories
into a consistent system, eliminating deflections of the vertical due to the
irregular mass distribution within the Earth.

4. Determine continuously the positions of a number of satellites in their
orbits by tracking them from observatories on the Earth with known
coordinates according to item 3.
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Figure 7-3. Chartlet issued in the 1990s to inform users about the shift in
parallels and meridians to occur on all charts and maps when introducing

the global reference system connected to satellite positioning (National
Maritime Administration of Sweden).



5. Determine the coordinates of any station on the Earth from radio ob-
servations of satellites with known positions according to item 4.

A preliminary version of satellite positioning (the Doppler method)
was used at an early stage by the Nordic countries for positioning and
mapping on the North Atlantic islands and in the North Sea. Early such
work was performed by the Danish geodesist Frede Madsen (1978) on
the Faroes and in Greenland, and by the Norwegian geodesist Jan Chris-
tian Blankenburgh (1978) in the North Sea.

To be able to use satellite positioning to its full extent most coun-
tries in the world have established and maintain a net of permanent re-
ference stations for satellite positioning, the coordinates of which are
most accurately determined in the ITRF. The Nordic countries were a
pioneering area in this respect, partly because of the work performed at
the Onsala space observatory. The first national net of permanent refe-
rence stations for satellite positioning was created in Sweden in 1993, its
coordinates being determined by Jan Johansson and Bo-Gunnar Reit
(1994). Soon after that, similar reference stations and their coordinates
were established in Norway by Oddgeir Kristiansen and Bjørn Geirr
Harsson (1998), in Denmark by Anna Jensen and Finn Bo Madsen (1998),
and in Finland by Matti Ollikainen, Hannu Koivula and Markku Pouta-
nen (1999). Because Sweden was so early, its coordinates have already
had to be re-determined to fit better to those of the Nordic neighbours,
by Lotti Jivall and Martin Lidberg (2000). The latitudes and longitudes of
all these ITRF-based systems are referred to an internationally adopted
geocentric ellipsoid, computed by the Austrian geodesist Helmut Mo-
ritz (1980) on the basis of satellite orbit data. (This ellipsoid actually is
very close to one computed already by Helmert (1906) based on gravity
data.)

Thus the end of the 1900s has seen a revolution in positioning on the
Earth, both for mapping and navigation, comparable only to the introduc-
tion of triangulation in the middle of the 1700s. This has, however, also
given rise to new problems to handle, as will be seen in the following
section.
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7.4 The moving pole on the Earth – and the moving continents

Back in 1844 the German astronomer Christian August Friedrich Pe-
ters, then working at the Russian central observatory of Pulkovo outside
St. Petersburg, began to look for a periodic variation in its latitude. The
background was that, according to Euler’s theory for the rotation of rigid
bodies, the axis of rotation in a freely rotating body is not stable, unless
the axis of rotation coincides with an axis of symmetry of the body. Apply-
ing the theory to the Earth, being flattened at the poles, Peters (1844)
found that its rotational axis should move around its symmetry axis with
a period of 304 days, close to 10 months. This means that each pole of the
Earth should move around in a small circle of unknown radius with this
period. If so, such a polar motion would manifest itself as a periodic va-
riation of the latitude with the same period.

Peters started searching for a polar motion with the predicted period
of 304 days. He did not find any. His successors continued searching.
They did not find any either. Still after half a century the polar motion
had not been detected. Then, suddenly, a polar motion was discovered
by the American insurance mathematician and private astronomer Seth
Carlo Chandler (1891), reanalysing all the data. The amplitude was of
the order of 10 m. But the period was not at all the predicted one – it was
427 days, close to 14 months. Already the year after Chandler’s disco-
very the American astronomer Simon Newcomb (1892) presented an ex-
planation of the surprisingly long period of the polar motion. From the
knowledge of tides it was known that the Earth was somewhat elastic.
Based on this Newcomb showed that the effect of the elasticity of the
Earth is to lengthen the period of polar motion by about 100 days.

Thus the latitude of any station on the Earth, as determined by astro-
nomical positioning, undergoes a periodical variation with an amplitude
of some 10 m (0.3”) and a period of 14 months. After several decades of
careful observations of this phenomenon made at several stations, an ad-
ditional phenomenon was discovered by the American geodesist Wal-
ter Lambert (1922). The latitudes turned out to change gradually with
time, implying a secular drift of the pole in a direction towards north-
eastern Canada. This polar drift had been anticipated by Helmert (1884),
suggesting, quite correctly, that it would be a consequence of redistri-
bution of matter in the Earth in connection with the postglacial rebound
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of northern Canada and Scandinavia. The polar drift amounts to some
10 m per century.

As long as absolute positions, because of the deflections of the ver-
tical, were uncertain on the order of hundreds of metres, polar motion
and polar drift were not crucial problems. But with the introduction of
satellite positioning, reducing absolute uncertainties to the order of cen-
timetres, polar motion and polar drift become necessary to handle. The
solution concerning the ITRF coordinates has been to fix the pole at its
mean position around 1900, known as the conventional terrestrial pole.
Thus all coordinates from satellite positioning so far refer to the mean
pole of 1900.

However, not only the pole, together with the equator, the parallels
and the meridians, move around on the Earth. Also the continents move,
a phenomenon known as continental drift (plate tectonics). Although
suggested by Wegener in the early 1900s, it was not until the introduc-
tion of VLBI that continental drift could be discovered by direct mea-
surements. The first confirmation of that kind was a result of the
Swedish-American cooperation between the Onsala observatory and the
small group of American observatories. From repeated VLBI determi-
nations of the distance between the observatories during five years, Her-
ring et al (1986) concluded that the distance between the North American
and European continents increased by 2 cm per year. We now know that
the velocities of continental drift in general amount to several cm per
year, corresponding to several m per century. The driving force behind
this appears to be convection currents in the interior of the Earth.

Obviously, the problem of continental drift in satellite positioning
has to be handled in some way. As with the polar drift the solution in the
ITRF coordinates has been to fix the continents at their positions at a cer-
tain year, in this case 1989. Thus all coordinates from satellite position-
ing so far refer to the locations of the continents in 1989. (WGS
coordinates for navigation, however, refer to more modern years.)

So, while the satellite revolution in positioning has made it possible
to find one’s position on the Earth with unprecedented accuracy, it has
at the same time revealed new complications in specifying the position:
The coordinate system itself in the form of parallels and meridians is not
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stable. And the continents on which we live are not stable either. Also in
the vertical direction the Earth’s surface is moving, because of postgla-
cial rebound caused by the Ice Age, and because of earth tides caused
by the moon and the sun – but that is another story.

7.5 A brief review

Let us now look back and make a few brief reflections on the fun-
damental positioning for mapping:

1. Present-day satellite positioning is in principle quite similar to old-
time astronomical positioning: An institute first determines the coordi-
nates of celestial objects and make them public. A map-maker (or
navigator) then observes the same celestial objects and, using their coor-
dinates, determines the coordinates of the observation points on the
Earth.

2. On the other hand, two things have changed completely: One now
uses moving objects in orbits around the Earth, satellites, instead of fixed
objects on the celestial sphere, stars. And one now measures distances,
in space, instead of angles, on the celestial sphere (and in a triangulation
network).

3. In spite of the switch from stars to satellites, also today's satellite po-
sitioning rests on earlier observations of stars (and star systems). Thus,
ultimately, it is the stars of the Universe that still make it possible to find
one's position on the Earth.

In Tables 7-1 and 7-2 we have collected our estimated uncertainties
of the fundamental positioning for mapping through history. Table 7-1
gives the uncertainties in the national or continental latitudes and longi-
tudes in a relative sense. We note the drop in relative uncertainty with
the introduction of triangulation added to the astronomical positioning
in the middle of the 1700s (especially in longitude), and the drop again
with the introduction of satellite positioning towards 2000. Table 7-2
gives the uncertainties in the global latitudes and longitudes in an abso-
lute sense. Here we note the drastic drop in absolute uncertainty with
the introduction of VLBI (using distant star systems) and satellite posi-
tioning towards 2000, eliminating the unknown deflections of the verti-
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cal. In total, the uncertainty in positioning on the Earth's surface has de-
creased by seven orders of magnitude during 500 years, from 105 m or
100 km (≈ 1°) in the 1500s to 10-2 m or 1 cm (≈ 0.001”) around the year
2000!
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Table 7-1. Orders of magnitude of uncertainties (in m) in relative natio-
nal/continental latitudes and longitudes during five centuries. (A = astro-
nomical positioning, T = triangulation, V = VLBI, S = satellite positioning.)

Century Lat. Long.

1500s (A) 105 > 105

1600s (A) 104 > 105

1700s (A) 103 104

1700s (A + T) 102 102

1800s (A + T) 101 101

1900s (A + T) 100 100

2000 (A + V + S) 10-2 10-2

Table 7-2. Orders of magnitude of uncertainties (in m) in absolute global lati-
tudes and longitudes during five centuries. (A = astronomical positioning,
T = triangulation, V = VLBI, S = satellite positioning.)

Century Lat. Long.

1500s (A) 105 > 105

1600s (A) 104 > 105

1700s (A) 103 104

1800s (A) 103 103

1900s (A + T) 102 102

2000 (A + V + S) 10-2 10-2



8. Some special aspects

8.1 Modern coordinates of old fundamental observatories

Determining a latitude by astronomical positioning means measur-
ing vertical angles towards a star. When putting up the instrument for
measuring angles it is adjusted with a spirit level. The spirit level ”feels”
the direction of the plumb line, or the vertical. The vertical, being the
normal to the geoid, deviates from the normal to the ellipsoid. This de-
viation, the deflection of the vertical, directly affects the astronomically
determined latitude, as was explained in Chapter 7.

Determining a latitude by satellite positioning means measuring
distances through timekeeping of radio waves emitted from the satellit-
es. This procedure is independent of any spirit level and, hence, does not
depend on the direction of the vertical. Thus the latitude so determined
is unaffected by the deflection of the vertical. The same arguments go
for longitudes.

Denoting the star-derived or astronomical latitude and longitude by and
, and the satellite-derived or geodetic latitude and longitude by and ,

we may write, as in Section 7.1,

(8-1)
(8-2)

Here and are the absolute deflections of the vertical in the south-north
and west-east directions, respectively.

Now, the deflection of the vertical at a certain point is nothing but
the inclination of the geoid relative to the ellipsoid at that point. The
geoid height and, thereby, the deflections of the vertical are due to the ir-
regular mass distribution within the Earth. Hence these quantities can
be computed from a detailed and global knowledge of the Earth’s gravity
field. Such a knowledge has only been achieved during the last decades.
Modern geoid computations are based on a combination of satellite orbit
perturbations, surface gravity anomalies, and digital terrain models.
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Applying the above methods the author and his Swedish colleague
Jonas Ågren have used satellite positioning and gravimetric deflections
of the vertical to calculate the astronomical latitudes and longitudes of
some of the old fundamental observatories. The geodetic coordinates of
the observatories are determined from satellite positioning performed
on neighbouring triangulation stations combined with local ties to the
observatories. The deflections of the vertical are computed as the deri-
vatives of the geoid height in the south-north and west-east directions,
respectively. In a first paper (Ekman & Ågren, 2009) the latitude of the
Uranienborg observatory was studied. In a second paper (Ekman &
Ågren, 2010) the latitudes and longitudes of the København and Stock-
holm observatories were investigated, and also those of the Greenwich
observatory. The results are summarized in Table 8-1. The geodetic coor-
dinates there are in an ITRF-related system and can be considered error-
free. The deflections of the vertical have an estimated uncertainty of 0.2”;
accordingly the astronomical coordinates will have the same uncertainty.
Thereby the quality of the old astronomical observatory coordinates may
be investigated through an independent method.
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Table 8-1. Geodetic coordinates, deflections of the vertical, and astronomical
coordinates (in degrees, minutes and seconds) of some fundamental obser-
vatories. Longitude deflections divided by cos .

Observatory Geod. lat. Defl. Astr. lat.

Stockholm 59° 20’ 29.16” 3.89” 59° 20’ 33.0”
København 55 40 53.06 0.27 55 40 53.3
Greenwich 51 28 40.12 - 2.15 51 28 38.0

Observatory Geod. long. Defl. Astr. long.

Stockholm 18° 03’ 16.76” 12.69” 18° 03’ 29.4”
København 12 34 32.79 5.94 12 34 38.7
Greenwich - 0 00 05.31 5.51 0 00 00.2



The results in Table 8-1 are used to produce the modern coordinat-
es for Tables 5-2 and 5-4 in Chapter 5 and for Table 6-1 in Chapter 6. (In
Tables 5-4 and 6-1 the modern longitudes for the other observatories
have been estimated by adding the telegraph-determined longitude dif-
ferences from København and Stockholm, respectively.) The tables show
that the errors in observatory latitude fell below 1” with the determina-
tions of Schumacher (1827a) and Selander (1835), and that the errors in
observatory longitude fell below the same amount with the sea expedi-
tions of Struve (1844, 1846).

8.2 A triangulation lost and retrieved

After Finland and Åland had been ceded by Sweden to Russia in
1809, the Russians decided to build a large fortress on Åland and to move
a part of their Baltic naval fleet to these islands. This might be a back-
ground for a peculiar Russian interest in the coordinates from the tri-
angulation across Åland treated in Chapter 5. What happened was the
following.

The original report of Gadolin (1757) was for unknown reasons
never printed. When Hällström (1815) recomputed Gadolin’s triangula-
tion, his report was for unknown reasons not printed either. After Häll-
ström had died, his brother sent his manuscript of the report to the
Finnish Society of Sciences, in 1839. Soon after that, the Russian navy
hastened to borrow the manuscript but never returned it. After some
years they returned a copy of it instead, certified by two persons to be
reasonably true. Since the original manuscript now had become inac-
cessible it was not printed this time either. Not until at the end of the
century was Hällström’s (1815) report printed, but now based on the
Russian copy of it. The original manuscript probably no longer exists.

However, an earlier version of the original manuscript does in fact
exist, in the Geodetic Archives of the National Land Survey of Sweden.
This can be seen to be the ”pre-original” manuscript, since Hällström
here in a few cases has left an empty space in the text for later filling in
missing details. Moreover, a complete manuscript is kept in the Archives
of the National Maritime Administration of Sweden. The present author,
therefore, now has compared the coordinates in the pre-original as well
as in the complete manuscript with those in the Russian copy. After ne-
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arly 200 years it can be confirmed that almost all coordinates of the Rus-
sian copy are correct. (In one case, Getaberg, the longitude is in error by
5’, but this error occurs already in the complete manuscript.)

The Russian interest for this triangulation may be considered as a
further illustration of its accuracy: When the Russian navy got hold of the
document and did not want to return it, the measurements in the docu-
ment were nearly 100 years old, but obviously still considered valuable
for their hydrographers.

8.3 Ships instead of satellites

The basic principles of satellite positioning, introduced through the
Global Positioning System (GPS), have been described in Chapter 7. They
could be listed, in simplified form, as follows:

1. No sight between geodetic stations is needed.
2. From each station a number of distant moving objects – satellites – are
observed.
3. For each moving object the distance between the object and the sta-
tion is determined.
4. The distance is found by measuring the travelling time of a wave with
a known speed – a radio wave – emitted from the moving object.

Although the above method for positioning may seem modern, its
basic principles can, in fact, be said to have been proposed more than
250 years ago. In a short paper, briefly mentioned in Chapter 5, Mel-
dercreutz (1741) proposed a positioning method based on principles that
may be formulated in the following way:

1. No sight between geodetic stations is needed.
2. From each station a number of distant moving objects – war-ships – are
observed.
3. For each moving object the distance between the object and the sta-
tion is determined.
4. The distance is found by measuring the travelling time of a wave with
a known speed – a sound wave – emitted from the moving object.
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As can be seen, these principles can be said to be the same as for
GPS. Only the technology is somewhat older: War-ships instead of sa-
tellites are suggested, and sound waves instead of radio waves; see Fig-
ure 8-1. Let us call this method CPS, Coastal Positioning System.

Around the Baltic Sea there was at that time a great need for better
coastal maps and nautical charts. Triangulation had not yet been applied
for this purpose. Especially the important travelling and postal route
between Sweden and Finland through the Åland Islands with its exten-
sive archipelago was in need of a more reliable mapping. Meldercreutz
had married a girl from the Finnish side of the Baltic, which made him
travel several times between Sweden and Finland across the Åland Islands,
probably along the mentioned route (it is known that he died on Åland
along this route). Here he must have had unlimited possibilities to ex-
perience the lack of knowledge of the positions of islands and coasts;
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Figure 8-1. Meldercreutz´ idea of coastal positioning. If we exchange the
ships for satellites we get the idea behind satellite positioning.



there was no reasonably accurate map or chart available. When, later on,
triangulation was introduced for mapping the Baltic Sea, the Åland Islands
was the first area to be measured, as shown in Chapter 5.

According to Meldercreutz (1741), there could be different ways to
apply CPS. One way would be to determine the position of a coastal sta-
tion through the observations of at least two war-ships (and also the po-
sition of a ship through corresponding observations of at least two
coastal stations). Another way would be to determine the relative posi-
tions of two coastal stations through simultaneous observations of the
war-ships from both stations. Again we recognize similarities with GPS,
now in the form of absolute and relative GPS. Meldercreutz suggested
the possibility of using a whole fleet of war-ships for determining the
(relative) positions of a whole set of stations along the coast.

In order to determine the distances from the war-ships to a station
one was supposed to use a sound wave through the air. The sound
would be produced by firing a cannon on board the ship. This facilitates
time-keeping: When you fire the cannon, the observer at the station on
the coast will immediately see the light of the flame and start recording
the time. A number of seconds later the thunder from the cannon will
be heard by the observer, who will then measure the time elapsed, i.e. the
travelling time of the sound wave. Thus, time-keeping in CPS is suffici-
ent to do at the station, while in GPS time-keeping is needed both at the
station and in the satellites (requiring an extra satellite for calibration of
clocks).

To calculate the distance from the measured travelling time one
would then need to know the speed of the sound wave through the air.
Meldercreutz recommended for the speed of sound a value based on
British, French and Italian determinations, which was only 1 – 2 % larger
than the modern value.

However, there is no sign of CPS ever having been applied in real
field work. Why? One can assume that there must have been two prob-
lems.

The first problem would be to determine the positions of the war-
ships. This is a problem also with the satellites in GPS. In contrast to a sa-
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tellite, however, it is hardly possible to compute the motion of a sailing
war-ship in advance with sufficient accuracy, i.e. there is no reliable
”broadcast ephemeris”. On the other hand, there could be a kind of ”pre-
cise ephemeris”, where you afterwards calculate the ship’s position from
actual measurements on board the ship. If the depth of the water is not
too large, this could be made easier by casting anchor while the measure-
ments are going on, a possibility not available for satellites. Still, great
efforts would be needed to obtain sufficiently accurate ship positions.

The second problem would be to measure the time with sufficient
accuracy. This was no doubt the main problem. Supposing a ship to be
located, say, 5 nautical miles (nearly 10 km) off the coast, the sound of a
fired cannon would take some 30 seconds to reach the coast. To be use-
ful this would require the time to be measured with an accuracy of frac-
tions of seconds. This was not possible in the field with the clocks
available then.

In summary, the idea presented at this early stage in the develop-
ment of positioning is quite modern, although it could not be realized
with sailing war-ships and fired cannons, but had to await satellites and
radio signals!

8.4 Making maps with needles

In Chapter 6 we gave a brief explanation of the way triangulations
were used to put objects in their correct places on a national map. In prin-
ciple the fundamental triangulation was densified by local triangula-
tions, which in their turn were densified by even more local
measurements of directions and distances. In this way everything could
be placed on the map with their correct coordinates and the whole map
or chart constructed.

In Sweden, however, the situation was somewhat special. Sweden
happened to have a unique collection of old local maps of farms and vil-
lages. These maps did not have any common coordinate system and
could thus not be accurately connected or related to each other. On the
other hand it seemed a waste not to utilize all the geographic informa-
tion in these maps when producing the national topographic map in the
1800s. So, what was done was the following.
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The parallels and meridians of a topographic map sheet were con-
structed on a large sheet of paper fastened on a large table. Relevant local
maps were copied and diminished to small map fragments having a
suitable scale for being put together as a basis for the map sheet. Now,
all available triangulation stations were marked in their proper locations
on these map fragments or small pieces of paper. Each piece of paper
containing a triangulation station was fixed onto the table with a needle
through the triangulation station, the needle being put down into the
table at the correct latitude and longitude of the map sheet. Pieces with-
out a triangulation station had to be adjusted to their triangulated neigh-
bours through overlapping. The scene is described by a contemporary
geodesist: ”A table 3 or 4 ells [about 2 m] square is found heaped with
more than one thousand scraps of paper, of a size from that of a thumb-
nail to that of a man’s hand, all of which so far are kept in place by a for-
est of varnished sewing needles.” Then these map fragments were glued
together to form a preliminary map sheet for further mapping work.

Although unusual, this method nicely illustrates the fundamental
role played by the astronomical and geodetic work in making a map:
The triangulation stations – or nowadays the satellite stations – constitute
the skeleton, to which everything else in the map is tied!
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