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1. Background

The flattening of the Earth, nowadays determined with high precision
from perturbations of satellite orbits, was earlier determined by arc
measurements or gravity measurements at different latitudes on the Earth's
surface. A historical review of the earliest studies of the Earth's flattening may
be found in Todhunter (1873); see also Levallois (1988).

The arc measurements, combining astronomical latitude observations
with triangulation along meridians, constituted the main method. They started
with the famous expeditions sent out in 1735 and 1736 by the French Academy
of Sciences, one to Peru (now Ecuador) close to the equator, the other to
Sweden (now Sweden and Finland) close to the arctic circle. In addition to
these there was an arc measurement in France itself, and a little later one was
performed in South Africa and one in the Papal States (today's Italy). Thus, by
the middle of the century there were 5 arc measurements at hand. They
showed beyond doubt that the Earth was flattened at the poles, but the
amount of the flattening turned out to be difficult to determine; the results
were inconsistent.

Most of the arc measurement expeditions were charged with the task of
making gravity measurements as well. There were also separate gravity
expeditions carried out. The gravity measurements, using pendulums, were
less time-consuming than the arc measurements and could, therefore, more
easily be carried out in several different latitudes. Thus, by the time there were
5 arc measurements completed there were no less than 19 gravity
measurements performed in the world, although some of them quite close to
each other. The gravity measurements clearly confirmed that the Earth was
flattened at the poles. However, at this time there were no statistical methods
to analyse a large amount of data, ie. to deal with overdeterminations.
Probably due to this fact no conclusive result on the value of the Earth's
flattening from these gravity data was obtained.

Our intention here is to use regression analysis for the above-mentioned
gravimetric data, and then to apply Clairaut's theorem to determine the
corresponding flattening of the Earth, including its uncertainty. This result will
be compared with those from the contemporary arc measurements, and we
will see whether it would allow any conclusion also on the internal structure of
the Earth. Finally, the result as well as the gravimetric data themselves will be
compared with modern results and gravity values.



2.  Clairaut's flattening theorem and the Earth's interior

The possibility to determine the figure of the rotationally deformed Earth
from gravity measurements was discovered by Clairaut (1743). Assuming the
shape of the Earth to be that of an equipotential surface of the Earth's gravity
field, he derived the formula nowadays known as Clairaut's theorem, allowing
the flattening of the Earth ellipsoid to be calculated from gravity data.

The flattening is defined by

f=@-b)/a 1)

where a is the semi-major axis and b the semi-minor axis of the ellipsoid.
Correspondingly we have the gravimetric flattening

f=0b- )/ Va 2)

where v, is the (normal) gravity at the equator and vy the (normal) gravity at
the poles. In addition we need the ratio between the centrifugal force and the
gravity at the equator,

q=2a/v, ()

o being the Earth's rotational velocity. Clairaut's elegant theorem now reads:

fHf=59/2 )

Its original appearance is reproduced in Figure 1. Moreover, Clairaut proved
the expression for gravity y as a function of latitude ¢:

Y =va(l + f* sino) ®)

If we have a sufficient number of gravity measurements spread over different
latitudes, a regression curve according to (5) may be fitted to the data. This will
yield an estimate of the gravimetric flattening f*. Inserting this into Clairaut's
theorem (4) we obtain an estimate of the geometric flattening f. This requires
the number g to be accurately known, which it was already at that time.

The formulae (4) and (5) are not quite exact; to their right-hand sides can
be added small higher order terms in a series expansion (Helmert, 1884;
Heiskanen & Moritz, 1967). As already the next term would contribute only
some parts in a thousand, an insignificant amount in our case, we will keep to
the original formulae above.
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Figure 1. A page from Clairaut's book (1743) where his theorem first appears,
third line from the bottom. (His ¢ corresponds to our g, his 6 to our f, and his
(P - II)/I1 to our f*.)



Although Clairaut's theorem is independent of the internal structure of
the Earth, the flattening is not. Clairaut himself (1743) showed that the
flattening is dependent on the density distribution inside the Earth, and bound
by two extreme values. A completely homogeneous Earth would yield the
maximum flattening,

fh=fn"=59/4 | (6)

The more the density gradient towards the centre of the Earth increases, the
more the flattening decreases. The limiting case of an Earth with all its mass
concentrated in the centre would yield the minimum flattening,

fe=fc/4=4q/2 ()
Applying g = 1/288 Clairaut finds
1/230>f>1/576

Hence, determinations of the Earth's flattening could, if accurate enough, also
give insight into the internal density distribution of the Earth.

We may remark here that in the somewhat artificial situation of an
inverse density distribution, the flattening would be larger than for a
homogeneous Earth. In the limiting case of all mass concentrated to a surface
shell one would have fs = 5q/2, fs* = 0 (Kopal, 1960). Thus, for inverse density
distributions 1/115 > f>1/230.

3. The gravimetric data

The gravimetric data used in our analysis are taken from a compilation
by Mallet (1772), who carefully reviewed all gravity measurements made in
the world until the end of the 1750s. All measurements made after 1730 have
been used; they benefit from the development of accurate pendulums in
London and Paris. The gravity measurement closest to the pole is the one
made near the arctic circle in connection with the arc measurement in
Sweden/Finland (Maupertuis, 1738). The gravity measurements closest to the
equator are those made in connection with the arc measurement in
Peru/Ecuador (Bouguer, 1749). In total there are 19 gravity measurements
(close to sea level); all the data are collected in Table 1.

_ The original pendulum data are given as lengths, expressed in French
lines, of pendulums with an oscillation half-period of one second. The lengths



Table 1. Early gravity measurements of the world (¢ = latitude in degrees and
minutes, [ = pendulum length in lines, g = gravity in gals).

Station ~ Year  Observer o l g
Pello (Sweden/Finland) 1736  Maupertuis 6648 44114 98216
Uppsala (Sweden) 1741  Celsius 5951 440.86 981.54
St. Petersburg (Russia) 1757  Grischow 5956 441.00 981.85
Reval (Russia/Estonia) 1757  Grischow 5926 44093 981.69
Pernau (Russia/Estonia) 1757  Grischow 5826 44092 981.67
Dorpat (Russia/Estonia) 1757  Grischow 5826 44091 981.65
Arensburg (Russia/Estonia) 1757  Grischow 5816  440.88 981.58
Leiden (Netherlands) 1755  Lulofs 5209 440.71 981.20
London (Great Britain) 1731 - Grahama. o. 5131 440.60 980.96
Paris (France) 1735 - Mairan a. o. 4850 440.57 980.89
Rome (Papal States/Italy) 1745  Jacquier 4154 440.28 980.25
Kingston (Jamaica) 1732 Campbell 1800 43940 978.29
Guarica (Haiti) 1743  Bouguer group 1946 43932 97811
Petit Goave (Haiti) 1735 Bouguer group 1827 43931 978.09
Portobelo (Panama) 1735  Bouguer group 934 43912 977.66
Panama (Panama) 1735  Bouguer group 855 43920 977.84
Puntapalmar (Peru/Ecuador) 1740  Bouguer group 002 43896 97731
Jama (Peru/Ecuador) 1740  Bouguer group -009 439.00 97740

Cape Town (South Africa) 1751  Lacaille -3355 440.07 979.78




Table 2. Latitudes and gravity values used in the analysis; figures based on
Table 1 as described in the text.

¢ &

66 48 982.16
59 51 981.54
58 54 981.69
52 09 981.20
5131 980.96
48 50 980.89
4154 980.25
3335 979.78
19 06 978.10
18 00 978.29

914 977.75

006 977.36




have been transformed into cm through the relation 1 line = 0.225583 cm
(Levallois, 1988). Then the gravity values, expressed in gals (cm/s2), have been
calculated from ‘

| being the pendulum length and ¢ the half-period. Both the original pendulum
data and the calculated gravity values are shown in Table 1.

As can be seen from Table 1, one observer has sometimes made several
measurements at approximately the same latitude. Such measurements should
be merged into one before going into a regression analysis. Accordingly, the
five Russian-Baltic measurements have been averaged into one, and the six
South American measurements by the Bouguer group into three. This leaves
us with 12 independent gravity values at different latitudes to be put into our
analysis; they are listed in Table 2.

It is worth noticing that at least one of the original pendulum clocks or
gravimeters is preserved and still functioning. This is Celsius' instrument,
constructed for him by Graham in London, which has been in operation at the
Astronomical Observatory of Uppsala since Celsius brought it there.

4. Applications of Clairaut's theorem

We start our analysis by making a regression of the data of Table 2 to fit a
curve of type (5) to the data. This means determining y; and f* in (5), including
their standard errors, through a least squares adjustment of the g values. The
outcome of this operation is

Ya=977.65 £ 0.11 gal
ff=1/(177.6 £ 6.8)

The data and the regression curve are shown in Figure 2. It is tempting already
here to make comparisons with modern values but we postpone that till the
end of the publication; at this stage we concentrate on analyzing the historical
data as they are, without knowing anything of future measurements.

The standard error of a gravity value (in this case at the equator) is as
small as 0.1 gal. The spread of gravity values around the regression curve
seems quite reasonable, although there are two deviations (with opposite
signs) of 0.3 gal. Thus there should be no reason to exclude any data because of
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Figure 2. Regression curve fitted to the gravity data of Table 2.
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obvious non-random errors. Consequently we also accept the obtained
estimate of the gravimetric flattening for further processing.

Before putting f* into (4) we have to fix a value of the equatorial ratio g.
Bouguer (1749) gives q = 1/288.5. This agrees well with the value we can
determine ourselves from (3). In this expression o is found from the known
length of a sidereal day, 86 164 s, yielding ® = 7.2921 10-2 s-1, 4 has to be taken
from the arc measurements, indicating @ ~ 6 380 or 6 390 km, and v, is already
determined above. The result is

g=1/(288.0 + 0.2)

where the standard error has been somewhat loosely estimated from the
uncertainty in a. Obviously g can be considered error-free in comparison with

.

Now we are in the position to insert f* and g into Clairaut's theorem (4).
We obtain ’

F=1/(327.9 + 12.6)

This is a very good estimate of the Earth's flattening, the standard error being
surprisingly small.

Furthermore, this estimate allows us to draw conclusions on the Earth's
interior. Applying a ¢ distribution with 10 degrees of freedom (12 - 2
overdeterminations) we find a 95 % confidence interval for f of

1/299.8 > f>1/356.0

Thus we have 1/230 >> f, showing that the Earth cannot be a homogeneous
body; the density has to increase towards the centre of the Earth. Clairaut
(1743) already notes that the gravity data he has at hand points in such a
direction.

5. Comparisons with contemporary arc measurements
As mentioned in the Background chapter, the flattening investigations
considered as the main ones were the 5 great arc measurements performed. In

order of latitude they were:

1. Peru /Ecuador (equator) 1735 - 1744 under the leadership of Bouguer.
2. South Africa 1750 - 1753 under the leadership of Lacaille.
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3. Papal States/Italy 1750 - 1755 under the leadership of Boscovich.

4. France 1739 - 1744 under the leadership of Cassini de Thury.

5. Sweden/Sweden-Finland (arctic circle) 1736 - 1737 under the leadership of
Maupertuis.

However, it was difficult to find a common flattening from these arc
measurements. Calculating the flattening from pairwise measurements with
sufficient latitude differences, i.e. from all pairs containing either the equatorial
or the arctic measurement (or both), resulted in a wide spread of values (see
e.g. Mallet, 1772),

1/144 > f>1/352

The equatorial and the arctic measurement in combination yielded f = 1/215.
(These computations by Mallet are correct, in contrast to his computations
from gravity data, which apparently rest on an assumption valid only for a
homogeneous Earth.) On the whole, several authors were led to assume a
flattening of f~ 1/230, including Lalande (1764) in his authoritative text-book
in astronomy.

Comparing our gravimetric determination of the flattening with that
possible to make from the arc measurements, the gravimetric one is obviously
superior. The accuracy is considerably higher and the result rests on 10
overdeterminations instead of 3. In particular, while the gravity measurements
allow us to deduce the inhomogeneity of the Earth, the arc measurements do
not allow any conclusion at all in that respect. (If anything, they rather indicate
a homogeneous Earth.)

6. Comparisons with modern results

It is now time to compare the obtained results with modern ones, based
on the GRS 1980 ellipsoid. For our three main quantities we have, according to
Moritz (1980),

Vg = 978.03 gal
f=1/188.6
f=1/298.3
The obtained flattenings f* and fin chapter 4 can be seen to deviate by about

twice their standard errors from the modern values. The upper limit of the 95
% confidence interval for f, 1/299.8, comes very close to the modern value
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Figure 3. Normal gravity curve according to GRS 1980 compared with the
gravity observations of Table 1.
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above. Thus the result must be said to be quite good also from today's point of
view.

The obtained equatorial value of the gravity, on the other hand, deviates
by between three and four times its standard error. This calls for further
comparisons of the gravity data themselves. In Figure 3 we show all the 19
gravity measurements in relation to the normal gravity curve of the GRS 1980
ellipsoid, which is the modern version of the curve of Figure 2. All
measurements are made close to sea level so that deviations from normal
gravity should be more or less negligible. Figure 3 reveals what seems to be
two systematic errors: a small general one, and one connected to the Bouguer
equatorial group.

The general systematic error amounts to - 0.2 gal. The reason behind this
is most probably an effect discussed already by Bouguer (1749): The pendulum
measurements are not performed in vacuum. Bouguer estimated this effect at
about - 0.10 lines in pendulum length, which corresponds to about - 0.20 gal,
‘agreeing nicely with the error seen i Figure 3. Correcting for this effect, we still
find a systematic error, in the measurements of the Bouguer group, amounting
to - 0.4 gal. Its origin remains unknown (although a temperature effect might
be suspected); it is too large to be caused by local gravity anomalies. This error
has a major influence on the flattening result because of its closeness to the
equator, i.e. to one end of the regression curve.

7. Concluding remarks

Our analysis of the gravity measurements in the world made around the
1740s has shown that they allow a much better determination of the flattening
of the Earth than the famous contemporary arc measurements. We obtain f =
1/(328 + 13). Moreover, according to Clairaut's theory this result demonstrates
that the Earth is an inhomogeneous body, with the density increasing towards
its centre. In reality this was not demonstrated until nearly half a century later,
when Cavendish, through determining the gravitational constant, could show
that the Earth's mean density was larger than its surface one. At the same time
also Laplace (1799), with more gravity data at hand, reached a flattening close
to the one above.

The discrepancy between the obtained flattening and the real one (f =
1/298) almost falls within the 95 % confidence interval. Most of the
discrepancy can be attributed to a systematic error of unknown origin detected
in the equatorial gravity measurements of the Bouguer group.
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